Fluid Power Products on the Airbus A300 and A310

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Power Products on the Airbus A300 and A310 Aerospace Marine Defense S1KFf Fluid Power Products On the Airbus A300 and A310 The Fluid Power Division of Vickers The A300, with seating capacity for up Other advantages of the A300 and A31 0 Aerospace Marine Defense Group, a to 315 passengers, and its smaller include: extremely low noise and air recognized leader in advanced partner the A31 0, with space for 21 0 to pollution levels; the latest in avionics; technology hydraulic and electro- 280 seats, are Airbus' entry into the improved cargo handling capability; and hydraulic components for aerospace, short to medium-range, wide-body a demonstrated high reliability rate. marine and defense vehicles, was commercial jet airliner market. Both The wide-body concept, which Airbus chosen to supply hydraulic pumps, aircraft are fitted with either Pratt & has incorporated into both the A300 and motorpumps, power transfer units and Whitney or General Electric turbofan the A31 0, has greatly increased the valves for the Airbus A300 and A31 0 engines which, combined with the operating efficiency of these aircraft over commercial jet airliners. Airbus Industry, high-lift wing design, make these aircraft earlier jet airliner designs. Because of a consortium comprised of cooperating two of the most efficient and economical its greater capacity for passengers and * airframe manufacturers from throughout jet airliners in use today. The A300 cargo, the A300 series requires fewer Western Europe, is headquartered in series' twin engine concept, along with scheduled frequencies to perform the Toulouse, France, where the aircraft other state-of-the-adt improvements in same productivity of the narrow-body components and subassemblies are engine design, has produced a 25% jets. This results in a significant gathered for final assembly and flight decrease ini fuel consumption over reduction in flight crew, maintenance, testing. previous-eneration aircraft. and fuel costs. C5-5B * 11/96 -~~~~ I The Hydraulic System operations. Emergency power is Vickers also supplies hydraulic system generated by one 0.75 cu. in./rev (12.29 relief valves for the A300 and A31 0. The A300 and A31 0 employ three ml/rev.) variable-displacement, These valves are capable of consistent independent, 3000-psi (207 bar) pressure-compensated, inline pump operation in a temperature range hydraulic systems to furnish the mounted to a retractable ram air turbine. between -50 degrees to +90 degrees hydraulic power required to operate Poe staserdcentigrade (-1 22 degrees to -1 94 flight controls, landing gear, brakes, Power is transferred among the three degrees F) and allow system fluid to be nosewheel steering and cargo handling independent hydraulic systems by two vented safely back to the reservoir in systems. Primary hydraulic power is unidirectional power transfer units the event fluid pressure or temperature developed by a pair of Vickers 2.40 cu. without exchanging fluid or should rise above the valve's preset in./rev (39.31 ml/rev.) variable interconnecting lines. The Vickers PTU value displacement, pressure-compensated enables the flight crew to perform check main engine-driven pumps mounted to list procedures by starting only one Vickers, Incorporated, has been actively the accessory drive gear box of each auxiliary power motorpump and involved as a supplier of reliable fluid engine, transferring power from one system to power components for the Airbus A300 the other. The PTU also provides a and A310 since 1969. The following is For the A300, two Vickers inline, AC ready source of hydraulic power should a detailed description of Vickers electric motorpumps provide auxiliary the main pumping unit in one of the participation in the Airbus A300 and power for ground and cargo handling other systems malfunction while in flight. A310 programs. MPEV3-032-1 E Auxiliary Power Motorpump For ground, check-list and mainte- nance operations, hydraulic power is supplied by two air-cooled, electric mo- torpumps. Each unit uses a 115/200 VAC, explosion-proof electric motor to convert aircraft electrical energy into rotary motion to power the 8 gpm (30.28 Umin), 7200 rpm, variable- displacement, 3000 psi (207 bar), pres- sure-compensated, inline piston pump.- Displacement is 0.253 cu. in./rev (4.14 ml/rev). The weight of the complete _ package consisting of electric motor _ and pumping unit is 30 lbs (13.61 Kg). HR6B9-002-GB2 Relief Valve In 1rt This| Vickers1Sl l~i inline valve provides pres- ¾ ~~~~~~~~~~~~~~~~~sureoverload protection for the auxiliary motorpumps. The 3000 psi (207 bar) valve has a cracking pressure of 3400 psi (234 bar) and a reseat pressure of 3200 psi (220 bar) with a flow rating of 0.22 gpm (.839bmin). Valve weight is 0.5 lbs (.227 Kg). HR6B9-002-GB3 Relief Valve This inline Vickers valve provides hy- draulic system thermal protection on board the A-300. The 3000 psi (262 bar) valve has a cracking pressure of 3800 psi and a reseat pressure of 3500 psi (241 bar) with a flow rating of 0.02 gpm (.075 Umin). Valve weight is 0.35 lbs(.159 Kg). 0 - I HR6B9-310-GB1A Relief! Depressurization Valve This plate-mounted Vickers valve pro- __ _ _ _ _ _ _ _ vides safety depressurization of the _- _- _- _-_ _- main hydraulic system. The 3000 psi (207 bar) valve has a cracking pressure in the 3400 psi to 3500 psi (234 to 241 bar) range and a reseat pressure of 3200 psi (220 bar) with a flow rate of 31.0 gpm (17.34 Umin). Valve weight is - -- -- -- ~~~~3.5lbs (1.59 Kg). 64WE07501-1 Ram Air Turbine Pump (A310) This variable displacement hydraulic pump provides emergency power to ac- tivate the hydraulically controlled ram air turbine. The other purpose of this pump is for ground check out of the emergency system components. Dis- I ~~ ~~---placement is 0.74 cu. in./rev. (1 2.12 ml/ rev) Pump weight is 11.5 lbs. (5.22 kg). Summary Vickers Hydraulic Components on the Airbus A300 and A310 MODEL NO. FUNCTION OTY. PER A/C AIRCRAFT PV3-240-2F or 2G Main System Pressure Supply 4 A300/ A31 0 PV3-075-12 Ram Air Turbine-Driven Pump 1 A300 MPEV3-032-1 E Auxiliary Hydraulic Pump 2 A300/ A31 0 MPHF1-152-3A Power Transfer Unit 2 A300/ A31 0 HR6B9-002-GB1A Relief Valve 1 A300/A310 HR6B9-002-GB2 Relief Valve 1 A300/A310 HR6B9-002-GB3 Thermal Relief Valve 4 A300 HR6B9-310-GB1A Main System Safety 3 A300/A310 64WE07501-1 Ram Air Turbine-Driven Pump 2 A310 ~~~~~~~~~~~~~~~~~~ * PV3-240-2F / 2G Main HR6B9-002-GBIA Relief/ PV3-075-12 Ram Air Turbine Engine-Driven Pump Depressurization Valve Pump (A300) Primary power for the three indepen- This Vickers plate-mounted relief/ Emergency hydraulic power is sup- dent hydraulic systems is supplied by depressurization valve provides ther- plied by one 15.7 gpm (59.43 Umin). four 37.5 gpm (141.95 Urmin), 3880 mal protection for the emergency 5200 rpm, variable-displacement, 3000 Orpm, variable-displacement, 3000 psi brake hydraulic system. The 3000 psi psi (207 bar), pressure-compensated (207 bar), pressure-compensated in- (207 bar) valve has a cracking pres- inline piston pump. This pump pro- line piston pumps. Each pump is sure of 3450 psi ( 23.9 bar) and a re- vides hydraulic pressure and flow to equipped with an electrical seat pressure of 3200 psi (224 bar) flight control surfaces in the event pow- depressurization valve (EDV). The with a flow rating of 0.22 gpm (.83 er is lost in both engines. Displace- EDV and compensator are drained to Umin). Valve weight is .79 lbs (.36 Kg). ment is 0.75 cu. in./rev (12.29 ml/rev. the case providing increased case Pump weight is only 9.2 lbs (4.17 Kg). flow and improved cooling of the unit. Displacement is 2.40 cu. in./rev.(39.31 ml/rev.). Pump weight is 29.5 lbs (13.38 Kg). / MPHFI-1 52-3A Power Transfer Unit The transfer of hydraulic power (but not fluid) between the three indepen- dent hydraulic systems is accom- plished with two uni-directional Vickers power transfer units. The unit consists ' of two bent-axis rotating groups con- tained within two housings, one group acting as a hydraulic motor to drive the other as a hydraulic pump. The uni- directional power transfer unit is con- trolled by a 28 VDC, solenoid-oper- ated shut-off valve. Rated speed a is O 5600 rpm. Displacement in the pump is 1.318 cu. injrev. (21.58 ml/rev), and - - - - 1.519 cu. in./rev (24.88 ml/rev) in the - - - - motor. The power transfer unit weight _ _ _ m is 22 lbs (9.98 Kg). The Vickers Aerospace Marine Defense Group The combined divisions of Vickers Aerospace Marine Defense Group and its sister company Aeroquip Corporation form a synergy a of multitechnology capabilities serving aerospace, marine, defense markets worldwide. The result is a new dimension of system _ capabilities and quality products from concept through life cycle. A Manufacturing * Sales * Service Centers Global locations Vickers, lncor'porated Vickers Systerns DiMkn ~ Vickers Systems Drosion VickuersSystems Divsion Vidoks'sSystemns DOvsion Fluid PowverCivteion TRINOVA Ltd TRINOVA Crrb TRINOVA SpFA. TRINOVA S.A. 5353 Highland Drina Aerospace Marine Defense Group Aerospace Marine Defense Group AeropaceMarneDefensevGroup Aerospace Marine DefrensGroup Jackson, MS 39206-3449 Larchwood Avenue Post Fach 1241 Via Mconzedse34 Le PaireClub des Septs Dorners USA Bechamrpkin Am Joseph 16 Vignette. Muin 2D Rat 2 Phones: (601) 981-2811 Harnoths~R09 30N Wehelmn, D-61269 heay 78, G~nramdes, SASh-DandifS Faxt (601) 987-5255 England Germany Phone: (39) 295054222 312008Thulouse Telex: 62915661 Phone: (44) 1705-485451 Phone: (49)60081 -1O0 Fax: (39) 29565730 France Easymkl: 62915661 Fax: (44) 1705-492400 Fax: (49)6081 -10339 Tele: 84333317 Phone: (33) 561573-333 Telex: 86749 Fax: (33) 561578-T777 TOKIMEC, Incorpoaated Vtckers.
Recommended publications
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • A World of Expertise
    Capability list A world of expertise Member of the Lufthansa Technik Group 2 Qualification for personnel in the aviation industry Addressing the industry’s need for training excellence Effective training methods The success of an aviation business depends on the Basic training, type training and competence training – quality, efficiency, safety and flexibility of its operations, each one of these areas in Lufthansa Techncial Training’s be they in the air or on the ground. Although state-of-the- portfolio are provided using different methods. The training art technology and systems are an important part of the takes place either in a classroom setting led by an instructor, equation, the crucial variable is the qualification of your in dedicated workshops, in a maintenance environment most important asset – your employees. Knowledge, skill, or as a trainee-paced, state-of-the-art e-learning course. attitude and creativity are the key differentiators. And those In order to implement all of these options as best as are the result of training. possible, courses are designed in line with the “blended That is why more than 600 companies working in aviation training” principle – optimum training is a mix of diverse, manufacturing, in maintenance, repair and overhaul (MRO) yet compatible and complementary training methods. and in other aviation-related fields worldwide trust Lufthansa The success of Lufthansa Technical Training’s model comes Technical Training – a company built on more than 50 years from a modular approach to training. This concept makes of experience in aircraft maintenance and operations opti- it easy to select just the right amount of training to suit the mization.
    [Show full text]
  • 11ADOBL04 December 2010
    11ADOBL04 December 2010 Use of rudder on Airbus A300-600/A310 (extracted from former FCOM Bulletin N°15/1 – Subject N°40) Reason for issue On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French Bureau d'Enquêtes et d'Analyses (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design lim- its and even lead to structural failure. The purpose of this Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rud- der control design characteristics. Yaw control General In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer. The rudder and vertical stabilizer are sized to meet the two following objectives: Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter). Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground). The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft. The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer. Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetric loads due to engine failure) leading to the required level of structural strength.
    [Show full text]
  • FAST Magazine Issue 22
    Cover FAST 11/03/98 21:55 Page 1 FAST 22/p1 ˆ p6 11/03/98 23:45 Page 1 AIRBUS TECHNICAL DIGEST NUMBER 22 MARCH 1998 HYDRAULIC SYSTEM PREVENTING LEAKS 22 JEROME QUENESCOURT FUEL SYSTEM DETECTING LEAKS USING HELIUM 77 ALAIN MARECHAL AND ALAIN DENINOTTI THE INTERNATIONAL REGULATORY CLIMATE ANDREW S. Mc CLYMONT 1111 IMPLEMENTING JAR-OPS WITH AIRBUS INDUSTRIE OPERATIONAL DOCUMENTATION 1717 GUY DI SANTO THE PORTABLE WATER DETECTION TOOL FOR A300/A300-600/A310 AIRCRAFT 2121 RENE SAVOIE AND MARIE-SOPHIE CALAIS LIGHTNING STRIKES AND AIRBUS FLY-BY-WIRE AIRCRAFT CAPTAIN CHRIS KRAHE 2525 AIM-FANS WINS GROWING NUMBER OF ORDERS JEAN-PIERRE DAMBRINE 2828 CUSTOMER SERVICES CONFERENCES 3030 THE FIRST AVIATION REGULATION? 3131 RESIDENT CUSTOMER SUPPORT REPRESENTATION 3232 The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus Industrie. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. © AIRBUS INDUSTRIE 1998 Publisher: Airbus Industrie Customer Services, 1 rond-point Maurice Bellonte, 31707 Blagnac Cedex, France Editor: Denis Dempster, Product Marketing Telephone +33 (0)5 61 93 39 29, Telex AIRBU 530526F, Telefax +33 (0)5 61 93 27 67 Graphic design: Agnès Lacombe, Customer Services Marketing Photo-engraving: Passion Graphic, 60 boulevard Déodat de Séverac, 31027 Toulouse Cedex, France Printer: Escourbiac, 5 avenue Marcel Dassault, 31502 Toulouse Cedex, France This issue of FAST has been printed on paper produced without using chlorine, to reduce waste and help to conserve natural resources.
    [Show full text]
  • Flight Safety DIGEST OCTOBER 2005
    Flight Safety DIGEST OCTOBER 2005 Analysis of CREW CONVERSATIONS Provides Insights for Accident Investigation Flight Safety Digest Flight Safety Foundation For Everyone Concerned With the Safety of Flight Vol. 24 No. 10 October 2005 www.fl ightsafety.org OFFICERS AND STAFF Chairman, Board of Governors Amb. Edward W. Stimpson President and CEO Stuart Matthews In This Issue Executive Vice President Robert H. Vandel General Counsel and Secretary Kenneth P. Quinn, Esq. Treasurer David J. Barger Analysis of Crew Conversations ADMINISTRATIVE Provides Insights for Accident Manager, Support Services Linda Crowley Horger Investigation 1 New methods of examining recorded voice communications FINANCIAL can help investigators evaluate interactions between fl ight Accountant Millicent Wheeler crewmembers and determine the quality of the work environment on the fl ight deck. MEMBERSHIP Director, Membership and Development Ann Hill On-board Fatalities Lowest Membership Services STATS Coordinator Ahlam Wahdan Since 1984 for Large Commercial Jets Membership Services Coordinator Namratha Apparao Boeing data assembled according to a new taxonomy created by an international team indicate that controlled fl ight into PUBLICATIONS terrain and loss of control in fl ight were, by a considerable margin, the leading causes of on-board fatalities in accidents Senior Editor Mark Lacagnina 18 from 1987 through 2004. Senior Editor Wayne Rosenkrans Senior Editor Linda Werfelman Associate Editor Rick Darby Ethics Is a Safety Issue Web and Print Y Production Coordinator Karen K. Ehrlich ‘Data smoothing,’ ‘pencil whipping,’ ‘normalization of Production Designer Ann L. Mullikin deviance’ — they’re all tempting shortcuts against which Production Specialist Susan D. Reed LIBRAR aviation personnel must take a principled stand in a safety Librarian, Jerry Lederer culture.
    [Show full text]
  • EASA.A.172 A300, A310, and A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES ...................................................................................................................
    [Show full text]
  • Aviation Profiles and Cases
    Ashfords has unique air accident claims and aviation expertise - AVIATION specialist lawyers have represented the victims of air accidents PROFILES AND dating back to 1977. The Aviation Team is dedicated to representing injured victims CASES and families who have lost loved ones as a result of aviation accidents around the world. The head of the Aviation Team is Jim Morris, a RAF pilot for 12 years before qualifying as a barrister to specialise in air accident litigation. The Team’s class leading expertise means that Ashfords has the resources and ability to act in all types of air accidents, from single engine pleasure flights to major airline disasters and acts of terrorism. Ashfords LLP ashfords.co.uk THE AVIATION TEAM Jim Morris Stephen Walker Partner & Barrister Legal Director Head of the Aviation Team [email protected] [email protected] Mobile +44 (0)7974 244769 Mobile +44 (0)7850 506057 Jim specialises in representing the victims of Stephen is a Legal Director in the Aviation Team. He has international air accidents. He was a professionally dealt with a wide range of civil litigation matters over the qualified Royal Air Force pilot prior to becoming an past 28 years. He advises private individuals, sole traders aviation lawyer, and has over 26 years’ experience in and small/medium enterprises in relation to civil litigation aviation and litigation. matters including misrepresentation/ estoppel, breach of contract, defamation, debt recovery, professional During Jim’s 12 years as a pilot, he was qualified on a negligence and high value personal injury cases. number of military aircraft (single piston, single turbo prop, fast jet, twin turbo prop, heavy jet) and his last Prior to joining Ashfords, Stephen worked for the TSB flying tour was on the Boeing E-3D AWACS.
    [Show full text]
  • EASA.A.172 Issue 4 Airbus A300 A310 A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 66 An agency of the European Union Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 67 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES .................................................................................................................... 8 2.1 Certified model : A300 B1 ....................................................................................................... 8 2.2 Powerplant .............................................................................................................................. 8 2.3 Maximum Weights (kg) ..........................................................................................................
    [Show full text]
  • How Airbus Surpassed Boeing: a Tale of Two Competitors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2007 How Airbus Surpassed Boeing: A Tale of Two Competitors William Alexander Burns University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Burns, William Alexander, "How Airbus Surpassed Boeing: A Tale of Two Competitors. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/252 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by William Alexander Burns entitled "How Airbus Surpassed Boeing: A Tale of Two Competitors." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Richard Ranaudo, U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by William A. Burns entitled “How Airbus Surpassed Boeing: A Tale of Two Competitors” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
    [Show full text]
  • In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001
    National Transportation Safety Board Washington, D.C. 20594 PRSRT STD OFFICIAL BUSINESS Postage & Fees Paid Penalty for Private Use, $300 NTSB Permit No. G-200 In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 Aircraft Accident Report NTSB/AAR-04/04 PB2004-910404 Notation 7439B National National Transportation Transportation Safety Board Safety Board Washington, D.C. Washington, D.C. Aircraft Accident Report In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 RAN S P T O L R A T LUR IBUS A N P UNUM E O T I I O T A N N S A D FE R NTSB/AAR-04/04 T Y B OA PB2004-910404 National Transportation Safety Board Notation 7439B 490 L’Enfant Plaza, S.W. Adopted October 26, 2004 Washington, D.C. 20594 National Transportation Safety Board. 2004. In-Flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 12, 2001. Aircraft Accident Report NTSB/AAR-04/04. Washington, DC. Abstract: This report explains the accident involving American Airlines flight 587, an Airbus Industrie A300-605R, N14053, which crashed into a residential area of Belle Harbor, New York, following the in-flight separation of the airplane’s vertical stabilizer and rudder. The safety issues discussed in this report focus on characteristics of the A300-600 rudder control system design, A300-600 rudder pedal inputs at high airspeeds, aircraft-pilot coupling, flight operations at or below an airplane’s design maneuvering speed, and upset recovery training programs.
    [Show full text]
  • Driver Training 2 Contents
    Driver training 2 Contents Aircraft components-------------------------------------------Page 3 Commercial aircraft ID---------------------------------------- Page 4-66 Helicopter ID-----------------------------------------------------Page 67-68 Business Jet ID---------------------------------------------------Page 69-74 Light aircraft ID--------------------------------------------------Page 75-77 Military aircraft ID----------------------------------------------Page 78-83 Aircraft Dimensions-------------------------------------------- Page 84-91 Taxiway signage------------------------------------------------- Page 92 Phonetic Alphabet--------------------------------------------- Page 93 Radiotelephony------------------------------------------------- Page 94 3 Aircraft Components Fin (Vertical Stabiliser) Wingtip Rudder Tail (Empennage) Airbrakes / Spoilers (Jet Aileron Elevator engines only) Fuselage Flaps Wind Shield (Cockpit) Horizontal Stabiliser Main Gear Nose Gear Wing Engines (nacelle) Nose (Radar Cone) Undercarriage Airbus A200-100 (Formally CS100) 4 Note Airbus purchased a 50.01% majority stake in the CSeries program in October 2017, with the deal closing in July 2018. The Airbus A220, previously known as Bombardier CSeries (or C Series), is a family of narrow- body, twin-engine, medium-range jet airliners marketed by Airbus but designed and built by the Canadian manufacturer Bombardier Aerospace. Airbus A200-300 (Formally CS300) Key Features • Double Emergency exits over wing • Winglets • Engines appear oversized compared to
    [Show full text]
  • Version: March, 2020 AIRCRAFT
    Version: March, 2020 WHICH MICHELIN® TIRE IS RIGHT FOR YOUR AIRCRAFT? COMMERCIAL and regional Segment AIRCRAFT (all) Position SIZE Technology PN SHORT PR SR **AIRCRAFT NOT YET QUALIFIED** MLG 46X17.0R20 X - NYLON M01110 30 225 **AIRCRAFT NOT YET QUALIFIED** NLG 30X8.8R15 X - NYLON M08203 16 225 AIRBUS A220, EMBRAER E190/195-E2 NLG 27X8.5R12 X - NYLON M20001 16 225 AIRBUS A220-100/300 MLG H42X15.0R21 X - NZGII M20201 26 225 AIRBUS A300-600, BOEING 727, 747-100/200/300 NLG / MLG 49X17 BIAS 020-791-0 32 225 AIRBUS A300-600, BOEING 727, 747-100/200/300/400 NLG / MLG 49X17 BIAS 020-791-0 32 235 AIRBUS A300-600, BOEING 727, 747-100/200/300/400 NLG / MLG 49X17 BIAS 020-791-0 32 235 AIRBUS A310-200, BOEING 747-100 NLG / MLG 46X16 BIAS 039-785-4 30 225 AIRBUS A318/A319/A320/A319neo/A320neo MLG 46X17.0R20 X - NYLON M01103 30 225 AIRBUS A318/A319/A320/A319neo/A320neo MLG 46X17.0R20 X - NYLON M01103 30 225 AIRBUS A318/A319/A320/A319neo/A320neo MLG 46X17.0R20 X - NYLON M01103 30 225 AIRBUS A318/A319/A320/A319neo/A320neo MLG 46X17.0R20 X - NYLON M01103 30 225 AIRBUS A318/A319/A320/A321/A319neo/A320neo/A321neo NLG 30X8.8R15 X - NYLON M08201 16 225 AIRBUS A318/A319/A320/A321/A319neo/A320neo/A321neo NLG 30X8.8R15 X - NYLON M08201 16 225 AIRBUS A320/A321≤89T MLG 1270X455R22 X - NYLON M13901 225 AIRBUS A320/A321≤89T MLG 1270X455R22 X - NYLON M13901 225 AIRBUS A321≤89T/A321>89T/A321neo≤97T MLG 1270X455R22 X - NYLON M20101 32 225 AIRBUS A321≤89T/A321>89T/A321neo≤97T MLG 1270X455R22 X - NYLON M20101 32 225 AIRBUS A330-200/200F/300F/800neo/900neo, A340-200/300
    [Show full text]