國立中山大學海洋生物研究所碩士論文指導教授︰劉莉蓮博士台灣西海岸蚵岩螺(Thais Clavigera)

Total Page:16

File Type:pdf, Size:1020Kb

國立中山大學海洋生物研究所碩士論文指導教授︰劉莉蓮博士台灣西海岸蚵岩螺(Thais Clavigera) 國立中山大學海洋生物研究所碩士論文 指導教授︰劉莉蓮博士 台灣西海岸蚵岩螺(Thais clavigera) 之族群遺傳結構 研究生︰謝榮昌撰 中華民國 九十 年 六 月 二十九 日 台灣西海岸蚵岩螺(Thais clavigera) 之族群遺傳結構 國立中山大學海洋生物研究所碩士論文摘要 研究生:謝榮昌 指導教授︰劉莉蓮博士 本文係利用蛋白質電泳技術,分析台灣西海岸蚵岩螺(Thais clavigera)族 群遺傳結構;探討地點(香山、台西、布袋、七股),成熟度(成熟、未成熟) 以及時間(1999.7~2000.3、2000.11)三因子,對蚵岩螺族群遺傳結構之影響。 結果顯示 11 個基因座中,僅 Ark、Lap-1、Lap-2、Pgm-1 四個為多型性基因座。 地點間平均基因異質性(mean heterozygosity, H)介於 0.100~0.129 之間,遺傳距 離(genetic distance , D)介於 0.0005~0.0029 之間,因此台灣西海岸蚵岩螺可視 為同一族群。但族群分化現象仍然存在,分化差異是由 Ark 基因座造成,依族群 分化差異排序為香山、布袋、台西、七股。此外,Ark 基因座之異質性在四個地 點都有隨著蚵岩螺體型的增大有提高的趨勢,平均基因異質性亦有相同的趨勢, 而不同採樣時間對遺傳結構的影響不大。由本實驗結果推測,蚵岩螺生殖生態和 環境因子(環境品質和地形),可能是造成台灣西海岸蚵岩螺族群遺傳結構相似 度高的重要因素。 III Genetic structure of populations of oyster drill(Thais clavigera) along the west coast of Taiwan Yung-Chang Hsieh (Advisor : L. L. Liu ) Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R. O. C. Thesis abstract The genetic structure of oyster drill Thais clavigera along the west coast of Taiwan were assayed by starch gel electrophoresis. Factors of locality(i.e. Shainsan, Taisi, Budai, Chiku),maturity(i.e. mature, immature) and sampling time (i.e.1999.7~2000.3, 2000.11) were analyzed to evaluate their effects on drill‘s genetic structure . Four of the eleven investigated enzyme loci were polymorphic , i.e. Ark, Lap-1, Lap-2, and Pgm-1. Among the four populations , the mean heterozygosity (H)and genetic distances(D) ranged from 0.100 to 0.129 and from 0.0005 to 0.0029, respectively. Therefore, T. clavigera along the west coast of Taiwan belongs to the same population. However, differentiation among populations still existed which was contributed by Ark locus. According to the degree of differentiation, the four populations were ranked as Shainsan、Budai、Taisi and Chiku . A similar trend was also observed in the four populations, as the drill size increased, the mean heterozygosity and the heterozygosity of Ark locus increased. Sampling time had no significant effect on genetic structure of populations. It is suggested that drill’s reproductive ecology and environmental factors(e.g. environmental quality topography)and may be important in determining the genetic structure of populations. IV 謝辭 總算到了最後一步寫謝辭的時候了,感謝指導教授劉莉蓮博士在這些年來的 啟發,不管是論文研究的進行,或是生活態度的指正都讓我獲益良多。並且感謝 李信徹博士和張學文博士,對論文錯誤之處提供寶貴的意見,並仔細的閱讀這難 懂的論文,在此致上最深的謝意。實驗室的同仁,包括大姐陳清菊小姐,林大裕 學長,和辛苦的學弟妹,給了我很多的幫助,讓我在每一次的採樣工作都可以順 利平安的完成,並且提供許多實驗上的技巧,讓我受用無窮。 另外中研院陳昭倫博士、郭建賢、邱郁文學長特別在我上台北時給我很多幫 助,不管是實驗上的意見或是生活上的照顧,讓我用實驗設備,睡實驗室,吃霸 王飯,給我很大的精神鼓舞,這一切點滴在心頭。上去麻煩大家很多次,實在很 過意不去。還有一票大學同學,特別是翠玉,都讓妳當運將,帶我去玩耍,去找 資料去北醫找老師討論。還有松霖,慧如,芬紋賢伉儷,美君在這段期間給的幫 忙,去香山採樣多虧你們了。 學妹楊雅雯在這期間帶來的生活點滴,一起辛苦出差,一起大聲討論,總在 我最需要幫助的時候伸出援手。最後感謝深愛我的家人,總在背後默默的支持 我,不管這一路上多少的辛苦,總是無盡的在為我付出,雖然大家在言詞總是含 蓄,但我感受到是無窮的愛與支持,將此成果獻給你們。 V 目錄 章次…………………………………………………………………………頁次 中文摘要……………………………………………………………………Ⅲ 英文摘要……………………………………………………………………Ⅳ 謝辭…………………………………………………………………………Ⅴ 目錄…………………………………………………………………………Ⅵ 表目錄………………………………………………………………………Ⅶ 圖目錄………………………………………………………………………Ⅷ 一、緒論……………………………………………………………………1 二、材料與方法……………………………………………………………6 三、結果……………………………………………………………………10 四、討論……………………………………………………………………16 參考文獻……………………………………………………………………23 個人履歷……………………………………………………………………51 VI 表目錄 表次 頁次 1 、本實驗所採用之同功異構脢及緩衝溶液……………………………………28 2 、蚵岩螺 15 個類群之殼長資料……………………………………………..... 29 3 、蚵岩螺 15 個類群之對偶基因頻率及基因異質性……...…………………...30 4 、蚵岩螺 15 個類群間 11 個基因座上的遺傳變異…...……………………….34 5 、蚵岩螺 15 個類群 F 統計(F-statistics)之分析結果………………………35 6 、蚵岩螺 8 個類群間 11 個基因座的遺傳變異……….……………...…….… .36 7 、蚵岩螺地點間之對偶基因頻率及基因異質性………….…………….……..37 8 、蚵岩螺地點間 11 個基因座上的遺傳變異………………………….……….39 9 、Exact test 試驗分析比較蚵岩螺地點間族群分化的顯著性………….……..40 10、蚵岩螺地點間的遺傳相似係數(右上)和遺傳距離(左下)矩陣….…...41 11、蚵岩螺地點間 F 統計(F-statistics )之分析結果…………………………42 12、卡方分析比較地點間之基因型組合………….………………………………43 13、台灣沿岸污染相關研究………………………………………………….……44 VII 圖目錄 圖次 頁次 1、蚵岩螺 Thais clavigera 15 類群間之遺傳距離(Nei,1978)UPGMA 關係圖………………………………………………………………………..45 2、蚵岩螺 Ark 基因型在地點間不同成熟度的分布比例…………………….46 3、蚵岩螺 Thais clavigera 四個族群之遺傳距離(Nei,1978)UPGMA 關係圖………………………………………………………..…….……….47 4、蚵岩螺各對偶基因頻率之 95%信賴區間在地點間之分布……………….48 5、蚵岩螺 Ark 基因型在地點間的分布比例…………………………………..50 VIII 第一章、緒論 當 1960 年初發展出蛋白質電泳技術之後,對生物族群遺傳結構和系統分類的 了解可說是更往前邁進一大步,同功異構脢(allozyme)的定義是,相同脢的若干 形式之一,具有不同的電泳移動性,在相同基因座中有不同對偶基因,並且這些 不同移動性的對偶基因,在生理反應的效率上有所差異,可能是反應環境變化或 是適應環境變化的一種指標( Hranitz and Diehl, 2000)。 很多因子都會影響同功異構脢的表現,例如遺傳因子的影響、.環境因子的影 響、和其他因子的影響,將分述如下:1.遺傳因子的影響:因為族群遺傳的基本架 構是建立在孟德爾的遺傳法則上,因此親代的遺傳結構就決定了子代會擁有多少 的遺傳多樣性,常應用在研究瓶頸效應( bottleneck effect)對族群結構的影響(Leberg, 1992)。當然還會有其他因子加入來增加其多樣性,例如突變、遷移等因子,所以 用同功異構脢的研究來比較族群間的親緣關係是很好的工具之一,例如劉等(Liu et al., 1995)比較台灣不同養殖區中牡蠣族群的遺傳結構相似度,認為台灣的牡蠣都是 屬於同一族群;和 Stramonita (= Thais) haemostoma 之族群遺傳研究,發現可能有 隱藏種存在(Liu et al., 1991);以及 Hayashi 在日本所做的研究(Hayashi, 1999),蚵 岩螺(Thais clavigera)相同形態族群間的遺傳距離(genetic distance)介於 0.0035 ∼ 0.0075,不同型態的族群遺傳距離介於 0.0132∼ 0.0221,這類研究結合傳統的形 態分類結果加入分子技術來更進一步的確認系統分類的地位。 遺傳因子會決定變異的多寡,也會決定出現的時機,就像有些同功異構脢會 在特定的生命階段才出現,例如兩棲類 Bufo woodhousii fowleri,在成熟後 Aat-2 (aspartate aminotransferase)、 Gdh-1(glutamate dehydrogenase)、 Idh-1(isocitrate dehydrogenase)三個酵素才出現,在幼生時期並不會出現(Hranitz and Diehl, 2000)。 1 海扇貝 Chlamys islandica Muller 1776(scallop)在不同生殖時期(未成熟、成熟、 產卵前、產卵後)(Brokordt et al., 2000),對於提供能量的物質如蛋白質和肝醣或 是能量相關的酵素,這些物質和酵素有不一樣的表現,整體上,在成熟或是生殖 過後的個體,肝醣的含量減少,多種磷酸化反應相關的酵素活性降低,如 glycogen phosphorylase、arginine phosphokinase、pyruvate kinase、octopine dehydrogenase、 citrate synthase,說明了生殖與否所需消耗的能量有所不同,酵素活性也有所差異 (Brokordt et al., 2000)。 2.環境因子的影響;生物生活在不同的環境當中,自然受到其周遭環境的影 響,環境因子可區分成兩大類,包括天然的環境因子變化,以及人為所產生的環 境因子改變。天然的環境因子變化,例如貽貝 Mytilus edilus 體內 Lap (leucine amonopeptidase)基因座(locus)所含對偶基因(allele)的表現,會受到海水鹽度 變化的影響,在鹽度變化大的區域 Lap94 頻率高,可以有效率的利用自由氨基酸 (Free amino acid)調節滲透壓(Koehn et al., 1980;Gardner and Kathiravetpillai, 1997)。玉黍螺 Littorina fabalis Ark 基因座中所含對偶基因的表現,會受到海浪衝 擊的影響,以大型藻類 Ascophyllum nodosum 的有無來界定海浪沖擊大小,即在海 浪沖擊較大(無 A. nodosum)的海域 Ark100 出現頻率最高,而在海浪沖擊小的海 域,出現頻率最高的是 Ark120(Tatarenkov, 1994; Tatarenkov and Johannesson, 1999), 說明了自然環境因素和生物之間的互動,生物為了適應環境的變化而有所改變。 另外,人為因素所產生的環境因子改變;在台灣密集工業開發的環境,污染是 第一個考慮的人為因素。污染就廣義的定義是,相較於所在地點的背景值有顯著 差異時即可稱之。依此定義環境的改變也是污染的一種,研究污染跟同功異構脢 相關性的報告相當多,例如跟重金屬相關的研究,魚類 Pimephales promelas 暴露 2 在銅離子濃度 850 ug/L 132 小時的情況下,Mdh-2 基因座的 a 對偶基因,而有較低 的存活率(Schlueter et al., 1995; Schlueter et al., 1997),螺類 Cerithium scabridum 的 LD50 毒性試驗發現在 0.004-0.010g/L 的鎘處理下 Pgi(phosphoglucoisomerase)異 質性越高的個體存活率越高 (Lavie and Nevo, 1986)。等腳類 Idotea baltica 在濃度 分別為 0.1mg/L 的鎘,0.1mg/L 鋅和 0.3 鎘+0.4 鋅 mg/L 的處理 20 天後,不同基因 型的 Pgm(phosphoglucomutase) 對鎘和鋅的處理有不同的存活率,鎘的處理會 降低基因異質性,但是鋅和鎘鋅的組合卻會提高基因異質性(de Nicola et al., 1992)。蝴蝶 Nectopsyche albida 暴露在硝酸汞 0.6mg/L 72 小時,發現 Pgm 的不同 基因型及基因異質性跟死亡時間有顯著相關(Benton and Guttman, 1992)。 與有機化合物相關的研究有,蚊子 Simulium equinum(L)的野外族群調查結 果發現在受到有機磷的污染環境下 Esterase 的活性較高,且特定對偶基因的頻率也 較高(Parker and Callaghan, 1997) 。其他污染物的影響,二枚貝 Musculium transversum 發現 Pgi-2 跟非離子狀態的氨濃度有顯著的相關性,在氨濃度>0.08 mg/L 的環境時 Pgi-2100 的頻率較高,在氨濃度<0.08 mg/L 的環境時 Pgi-274 的頻率 較高(Sloss et al., 1998)。在淡水魚 Notropis spilopteris 發現,Pgi-2 基因座基因型 頻率和水質有顯著相關,在水質不好的情況 Pgi-2BB 基因型頻率會降低,但 Pgi-2AA 和 Pgi-2AB 基因型頻率則會提高(Gillespie and Guttman, 1993)。 3.其他因素的影響,可能是後天上非基因性的變異,例如基因跟環境的交互作 用而改變了基因表現,其中包括了溫度、光週期、食物、酸鹼質和性別相關、轉 錄後期的修正( posttranslational modification)、疾病和寄生(Poly, 1997a; Poly, 1997b; Poly, 1997c),這些因子都有可能造成族群同功異構脢結構上的變異。 本研究所調查之物種蚵岩螺( Thais clavigera),在分類地位上是屬於軟體動物 3 門 Mollusca 、腹足綱 Gastropoda、前鰓亞綱 Prosobranchia 、新進腹足目 Caenogastropoda、新腹足亞目 Neogastropoda、骨螺科 Muricidae,是生活在岩礁岸 的生物,屬於肉食性的螺類,活動範圍小,灰褐色的外型並長有許多突瘤,體型 變異大,種的判別以口蓋上的圖樣為粗分的依據,在黃色橢圓形的口蓋上,有一 塊紅棕色三角形的區塊,再配合殼型來區分( Hwang and Huang ,1971;Lin and Hsu , 1979)。在台灣岩礁岸潮間帶幾乎都可見蚵岩螺蹤跡,尤其在牡蠣養殖區中數量更 是豐富並且會捕食牡蠣,對於牡蠣養殖造成相當大的傷害。在蚵岩螺的相關研究 方面,顯示蚵岩螺也常被當作反應環境中其他污染物質的生物指標,如砷、銅、 鋅(Han et al., 1997; Jeng et al., 2000)。並且有很多的研究都指出蚵岩螺可以反應環 境中有機錫的狀況,而有機錫是誘導蚵岩螺發生雄化(imposex)的因子之一 (Oehlmann et al., 1996),而台灣海域有機錫含量都已超過會引發雄化的濃度。並且 在野外的調查發現蚵岩螺的分布,相對於同屬不同種 T. rufotincta 由北到南有減少 的趨勢(個人觀察),在香山幾乎全是 T. clavigera 的族群,但布袋約各佔一半,在 東港則大多是 T. rufotincta。 由於蚵岩螺在台灣重要的牡蠣養殖區中族群數量都相當高,同時也是活動範 圍很小的種類,以此為材料研究環境改變對生物的影響是相當適合的。但是其族 群遺傳結構仍缺乏瞭解,更遑論環境變異所產生的的天擇效應,是否會反應在蚵 岩螺族群的遺傳結構上,因此本研究將著眼於蚵岩螺族群遺傳結構的了解。然而 影響族群遺傳結構的因素很多,基因漂移(gene flow)則是重要因素之一,而遷 移是造成基因漂移的主因之一,這包含了成體的活動力和幼生的散佈能力 (dispersal)。相關研究指出具有較長浮游期幼生的種類,基因漂移的情況比較頻 4 繁,所以族群間的遺傳變異會比較小,但是在族群內的遺傳變異會比較大( Todd et al., 1998)。由於蚵岩螺是具有浮游幼生的軟體動物,並且成體的移動範圍小,所 以本研究預期地點間的族群遺傳變異較小,而族群內的遺傳變異較大。實驗以蛋 白質電泳技術對蚵岩螺族群遺傳結構進行分析,包括時間、成熟度以及地點三因 子,樣品則取自西海岸香山、台西、布袋、七股的牡蠣養殖區。以檢視蚵岩螺族 群遺傳結構的變異,是否符合族群間變異較小之預期。 5 第二章、材料與方法 (一)、野外採集 在香山,台西,布袋,七股於 1999.7∼ 2000.3 以及 2000.11 兩次時間,採集 所需的生物樣品,為了方便採集工作進行,所以必須配合漲退潮的時間,採集時 間大約在退潮前一個小時開始,此時潮水慢慢退去,可以比較容易的採到所需生 物,大約有兩三個小時的工作時間可以利用。 (二)、實驗室處理 將採回的生物樣本身上的附著物清理掉,清理完後將樣本保存在-70℃超低溫 冷凍櫃中備用。將生物樣本從冷凍櫃中取出解凍,測量其殼長,殼重,濕重,組 織重等基本形質資料,體型界定是殼長小於 23mm 的個體定義為未成熟,殼長大 於 30mm 的個體定義為成熟。再將所需的腹足取下秤重,酌量加入萃取液( 10 mM Tris-HCl buffer pH 7.0 , 含 1% Triton X 100 ),再以研磨器(Tekmar Tissumizer)將 組織打碎,使得同功異構脢能夠釋放到萃取液中,以 4℃, 5000g 離心十分鐘後, 取上清液並分裝多管,保存於-70℃超低溫冷凍櫃中備用。 (三)、水平澱粉凝膠電泳 1、 凝膠製備跟緩衝液配製 秤取所需的澱粉 12.5%(Hydrolysed Potato Starch)跟所需的凝膠緩衝液,置 於錐形瓶中利用加熱器加熱煮膠,加熱至呈半透明狀時,利用抽氣幫浦抽氣三分 鐘,將凝膠中的氣體抽出,再將凝膠倒出均勻平鋪於壓克力槽中即完成凝膠製備。 6 本研究共使用四種緩衝液系統分別為:1.Tris-Citric acid pH 7.0,5h at 28 V/cm; 2.Tris-Citric acid pH 8.0,5h at 17 V/cm; 3.Tris-Maleic acid EDTA pH 7.4,5h at 18 V/cm; 4. LiOH pH 8.1/8.3,5hr at 17 V/cm。 2、 澱粉凝膠電泳步驟 (1)、 取 0.3X1.0 cm的濾紙沾萃取液,置於覆上一層吸水紙的藍冰上,吸取多餘 的萃取液以防電泳進行時互相干擾,在凝膠 1/3 處割開,將沾有萃取液的濾紙插在 凝膠上。 (2)、 取一塑膠盤裝些碎冰,將準備好的凝膠放在碎冰上,取兩只電泳槽分別裝 有 400ml 的電泳緩衝液置於凝膠兩旁,取兩塊海綿分別一端放在凝膠上,一端放 入電泳槽中形成鹽橋,使通上電流時產生通路。 (3)、 取一張保鮮膜覆蓋在凝膠上,在中間部分再鋪上一塊海綿,蓋上一塊玻璃 板,再將裝有冰塊的鐵盤放在玻璃板上。 (4)、 事先將電源供應器打開暖機,在電泳槽中插上電極,注意電流通過的方向, 通上電流開始進行。依照不同的緩衝液設定不同的電壓電流以及電泳的時間。 (5)、 切片及染色 電泳終止後,關上電源取下凝膠,依照製備的凝膠厚度不同可切割出 4-6 片凝 膠進行染色,最好以第二、三片染最重要的酵素。染色法則參照 Richardson et al., (1986); Hillis et al.,(1996)等文獻進行改良,共有 Arginine kinase (Ark) (EC 2.7.3.3),Esterase (Est) (EC 3.1.1.1),Fumarate hydratase
Recommended publications
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • The Influence of Canopy Cover on the Ecological Function of a Key Autogenic Ecosystem Engineer
    diversity Article The Influence of Canopy Cover on the Ecological Function of A Key Autogenic Ecosystem Engineer Jacqueline B. Pocklington 1,2,*, Michael J. Keough 2, Tim D. O’Hara 1 and Alecia Bellgrove 3 1 Department of Marine Invertebrates, Museum Victoria, Carlton, VIC 3053, Australia; [email protected] 2 School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; [email protected] 3 School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool Campus, PO Box 423, Warrnambool, VIC 3280, Australia; [email protected] * Correspondence: [email protected] Received: 8 April 2019; Accepted: 15 May 2019; Published: 17 May 2019 Abstract: Intertidal fucoid algae can function as ecosystem engineers across temperate marine regions. In this investigation, we assessed the function of the alga dominating rocky reefs in temperate Australia and New Zealand, Hormosira banksii. Invertebrate and algal species assemblages were examined within areas of full H. banksii canopy, areas where it was naturally patchy or absent (within its potential range on the shore) and areas where the intact canopy was experimentally disturbed. Differences in species assemblages were detected between areas with natural variation in H. banksii cover (full, patchy, negligible), with defined species associated with areas of full cover. Differences were also detected between experimentally manipulated and naturally patchy areas of canopy cover. Species assemblages altered in response to canopy manipulations and did not recover even twelve months after initial sampling. Both light intensity and temperature were buffered by full canopies compared to patchy canopies and exposed rock. This study allows us to predict the consequences to the intertidal community due to the loss of canopy cover, which may result from a range of disturbances such as trampling, storm damage, sand burial and prolonged exposure to extreme temperature, and further allow for improved management of this key autogenic ecosystem engineer.
    [Show full text]
  • 2006-2007 Intertidal Reef Biodiversity on Kangaroo
    2006-2007 Kangaroo Island Natural Resources Management Board INTERTIDAL REEF BIODIVERSITY Intertidal Reef Biodiversity on Kangaroo Island – 2007 ON KANGAROO ISLAND 1 INTERTIDAL REEF BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue: Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Kirsten Benkendorff Martine Kinloch Daniel Brock June 2007 2006-2007 Kangaroo Island Natural Resources Management Board Intertidal Reef Biodiversity on Kangaroo Island – 2007 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4980 Fax: (08) 8553 0122 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 0111 Fax: (08) 8553 0122 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board.
    [Show full text]
  • Download Full Article 2.0MB .Pdf File
    Memoirs of the National Museum of Victoria 12 April 1971 Port Phillip Bay Survey 2 https://doi.org/10.24199/j.mmv.1971.32.08 8 INTERTIDAL ECOLOGY OF PORT PHILLIP BAY WITH SYSTEMATIC LIST OF PLANTS AND ANIMALS By R. J. KING,* J. HOPE BLACKt and SOPHIE c. DUCKER* Abstract The zonation is recorded at 14 stations within Port Phillip Bay. Any special features of a station arc di�cusscd in �elation to the adjacent stations and the whole Bay. The intertidal plants and ammals are listed systematically with references, distribution within the Bay and relevant comment. 1. INTERTIDAL ECOLOGY South-western Bay-Areas 42, 49, 50 By R. J. KING and J. HOPE BLACK Arca 42: Station 21 St. Leonards 16 Oct. 69 Introduction Arca 49: Station 4 Swan Bay Jetty, 17 Sept. 69 This account is basically coneerncd with the distribution of intertidal plants and animals of Eastern Bay-Areas 23-24, 35-36, 47-48, 55 Port Phillip Bay. The benthic flora and fauna Arca 23, Station 20, Ricketts Pt., 30 Sept. 69 have been dealt with in separate papers (Mem­ Area 55: Station 15 Schnapper Pt. 25 May oir 27 and present volume). 70 Following preliminary investigations, 14 Area 55: Station 13 Fossil Beach 25 May stations were selected for detailed study in such 70 a way that all regions and all major geological formations were represented. These localities Southern Bay-Areas 60-64, 67-70 are listed below and are shown in Figure 1. Arca 63: Station 24 Martha Pt. 25 May 70 For ease of comparison with Womersley Port Phillip Heads-Areas 58-59 (1966), in his paper on the subtidal algae, the Area 58: Station 10 Quecnscliff, 12 Mar.
    [Show full text]
  • Science Journals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive SCIENCE ADVANCES | RESEARCH ARTICLE MARINE ECOSYSTEMS Copyright © 2017 The Authors, some Latitudinal trends in shell production cost from the rights reserved; exclusive licensee tropics to the poles American Association for the Advancement 1,2 3 3 of Science. No claim to Sue-Ann Watson, * Simon A. Morley, Lloyd S. Peck original U.S. Government Works. Distributed The proportion of body mass devoted to skeleton in marine invertebrates decreases along latitudinal gradients under a Creative — from large proportions in the tropics to small proportions in polar regions. A historical hypothesis that latitudinal Commons Attribution differences in shell production costs explain these trends—remains untested. Using field-collected specimens NonCommercial spanning a 79°N to 68°S latitudinal gradient (16,300 km), we conducted a taxonomically controlled evaluation of License 4.0 (CC BY-NC). energetic costs of shell production as a proportion of the total energy budget in mollusks. Shell production cost was fairly low across latitudes at <10% of the energy budget and predominately <5% in gastropods and <4% in bivalves. Throughout life, shell cost tended to be lower in tropical species and increased slightly toward the poles. However, shell cost also varied with life stage, with the greatest costs found in young tropical gastropods. Low shell production costs on the energy budget suggest that shell cost may play only a small role in influencing proportional skeleton size gradients across latitudes relative to other ecological factors, such as predation in present-day oceans.
    [Show full text]
  • Triphoridae in Northern New South Wales – Diversity and New Records
    ISSN 1834-4259 NO. 162 JULY, 2017 Triphoridae in northern New South Wales – diversity and new records. Lynton D. Stephens Email: [email protected] The coastline of northern New South Wales possesses a -tional sources of information on south-eastern Austral- high diversity of molluscs and was an apt venue for the ian species include Wilson (1993), Stephens & Vafiadis MALSOC conference in Nov-Dec 2015. The faunal (2015) and Stephens (2015). composition of the area is largely a mix of three groups: 1). temperate Australian species at or near their northern Between 2008 and 2015 I was fortunate to spend sev- end of range; 2). incursive tropical species, and 3). east- eral months on the northern NSW coast and was able ern seaboard endemics. North of Coffs Harbour the to collect and analyse some fairly extensive samples of fauna is quite different from that seen even around Syd- shellgrit. Upon the publication of Beechey (2015), I ney, with, as one might expect, a much higher diversity realised that several identified species had not been and proportion of tropical species present. previously recorded from NSW, and/or not illustrated by Beechey. A few short notes on these and other spe- Emblematic of this is the family Triphoridae, a group of cies are provided below, including 8 new records for generally sinistral gastropods which feed on sponges. NSW. The presence of unrecognised Triphoridae in Temperate Australian species were reviewed by Marshall the north of the state is no surprise; nevertheless, this (1983), who imaged most using SEM. A very useful information may be of benefit to anyone sampling or guide was published more recently by Beechey (2015), surveying in the area.
    [Show full text]
  • The Fisher Island Field Stat Ion-With an Account of Its Principal Fauna and Flora
    PAPEHS AND .PROCEEDINGS tW 'THE ROYAL SOCIETY OF TASMANIA, V'OLl.lME 92 THE FISHER ISLAND FIELD STAT ION-WITH AN ACCOUNT OF ITS PRINCIPAL FAUNA AND FLORA By E. R. GUILER, D. L. SERVENTY AND J. H. WILLIS (WITH 2 PLATES AND 9 TEXT FTGURESj t GENERAL DESCRIPTION OF FISHER ISLAND AND ITS MUTTON~BIRD ROOKERIES * INTRODUCTION mately 0'75 acres. The shoreline measures about Fisher Island Oat. 40° 10' S., long. 148° 16' E.) 530 yards and the greatest length, from North is among the smallest of the archipelago of islands Point to South Point, is 150 yards. Its elevation is comprising the Furneaux Group in eastern Bass about 19 feet above spring high-water mark. Strait. It lies off the southern shoreline of the Like the other islands in the Furneaux Group, major island in the group, Flinders Island, in Fisher Island is part of the basement Devonian Adelaide Bay, a portion of Franklin Sound which granite which forms the hills and mountain ridges separates Flinders Island from Cape Barren Island in the archipelago. On Flinders Island the low­ (fig. 1). Its convenient location to Lady Barron lying plains are covered by Tertiary alluvium and (the main port of Flinders Island, about 220 yards sands, with calcareous deposits in restricted areas. distant), its proximity to important commercial Limited Siluro-Devonian quartzites and slates also mutton-birding islands and the presence of a small, occur, and in the northern part of Adelaide Bay, at easily handled nesting colony of mutton-birds Petrifaction Bay, are exposures of Tertiary vesicu­ (PufJinus tenuirostris (Temminck), made it the lar basalts.
    [Show full text]
  • TAS-Bruny-Compiled Report-Appendix A
    Bruny Island, Tasmania, 2016 Appendix A: Fauna species lists Family Species Common name Ascidians Agneziidae Agnezia glaciata * Ascididae Ascidiella aspersa ^ Cionidae Ciona intestinalis ^ Didemnidae Diplosoma listerianum? * Pyuridae Halocynthia dumosa Pyuridae Pyura elongata Pyuridae Pyura gibbosa Styelidae Asterocarpa humilis Styelidae Botrylloides perspicuus Echinoderms Comasteridae Cenolia trichoptera Ophionereididae Ophionereis schayeri Asterinidae Meridiastra calcar Asterinidae Parvulastra exigua Ants Formicidae Amblyopone australis * Formicidae Anonychomyrma biconvexa * Formicidae Anonychomyrma cf. procidua * Formicidae Camponotus hartogi Formicidae Hypoponera scitula * Formicidae Iridomyrmex bicknelli * Formicidae Linepithema humile * ^ Formicidae Monomorium leae * Formicidae Myrmecia fulvipes * Formicidae Myrmecia pilosula * Formicidae Myrmecorhynchus carteri * Formicidae Notoncus hickmani * Formicidae Orectognathus clarki * Formicidae Pheidole cf. liteae * Formicidae Pheidole sp. 'BBBrunyLF07A' * Formicidae Polyrhachis cf. patiens * Formicidae Polyrhachis femorata * Formicidae Prolasius abruptus * Formicidae Rhytidoponera tasmaniensis * Formicidae Rhytidoponera victoriae * Formicidae Stigmacros punctatissima * Formicidae Strumigenys perplexa * Formicidae Technomyrmex jocosa * Formicidae Tetramorium sp. 'BBBrunyLFSSS2nr-mayriella' * Butterflies Nymphalidae Junonia villida * Meadow Argus Nymphalidae Heteronympha merope * Common Brown Nymphalidae Heteronympha penelope * Shouldered Brown Nymphalidae Geitoneura klugii Klug's Xenica;
    [Show full text]
  • Low Global Sensitivity of Metabolic Rate to Temperature in Calcified Marine Invertebrates
    Oecologia (2014) 174:45–54 DOI 10.1007/s00442-013-2767-8 PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates Sue‑Ann Watson · Simon A. Morley · Amanda E. Bates · Melody S. Clark · Robert W. Day · Miles Lamare · Stephanie M. Martin · Paul C. Southgate · Koh Siang Tan · Paul A. Tyler · Lloyd S. Peck Received: 11 December 2012 / Accepted: 29 August 2013 / Published online: 14 September 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Metabolic rate is a key component of energy of calcified invertebrates (bivalves, gastropods, urchins budgets that scales with body size and varies with large- and brachiopods), using a single consistent methodology, scale environmental geographical patterns. Here we con- including 11 species whose SMR was described for the duct an analysis of standard metabolic rates (SMR) of first time. SMR of 15 out of 17 species had a mass-scaling marine ectotherms across a 70° latitudinal gradient in exponent between 2/3 and 1, with no greater support for both hemispheres that spanned collection temperatures of a 3/4 rather than a 2/3 scaling exponent. After accounting 0–30 °C. To account for latitudinal differences in the size for taxonomy and variability in parameter estimates among and skeletal composition between species, SMR was mass species using variance-weighted linear mixed effects mod- normalized to that of a standard-sized (223 mg) ash-free elling, temperature sensitivity of SMR had an activation dry mass individual. SMR was measured for 17 species energy (Ea) of 0.16 for both Northern and Southern Hemi- sphere species which was lower than predicted under the metabolic theory of ecology (Ea 0.2–1.2 eV).
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE MARINE ECOSYSTEMS Copyright © 2017 The Authors, some Latitudinal trends in shell production cost from the rights reserved; exclusive licensee tropics to the poles American Association for the Advancement 1,2 3 3 of Science. No claim to Sue-Ann Watson, * Simon A. Morley, Lloyd S. Peck original U.S. Government Works. Distributed The proportion of body mass devoted to skeleton in marine invertebrates decreases along latitudinal gradients under a Creative — from large proportions in the tropics to small proportions in polar regions. A historical hypothesis that latitudinal Commons Attribution differences in shell production costs explain these trends—remains untested. Using field-collected specimens NonCommercial spanning a 79°N to 68°S latitudinal gradient (16,300 km), we conducted a taxonomically controlled evaluation of License 4.0 (CC BY-NC). energetic costs of shell production as a proportion of the total energy budget in mollusks. Shell production cost was fairly low across latitudes at <10% of the energy budget and predominately <5% in gastropods and <4% in bivalves. Throughout life, shell cost tended to be lower in tropical species and increased slightly toward the poles. However, shell cost also varied with life stage, with the greatest costs found in young tropical gastropods. Low shell production costs on the energy budget suggest that shell cost may play only a small role in influencing proportional skeleton size gradients across latitudes relative to other ecological factors, such as predation in present-day oceans. However, any Downloaded from increase in the cost of calcium carbonate (CaCO3) deposition, including from ocean acidification, may lead to a projected ~50 to 70% increase in the proportion of the total energy budget required for shell production for a doubling of the CaCO3 deposition cost.
    [Show full text]
  • Notes on the Intertidal Ecology of Trial Harbour, Tasmania
    PAPERS AND PROCEEDINGS OF THE HOYAL SOCIETY OF TAI::3MANIA. Vo,LUME 94 NOTES ON THE INTERTIDAL ECOLOGY OF TRIAL HARBOUR, TASMANIA. By E. R. GUILER Department of Zoology, University of Tasmania. (With 3 plates) 1. Introduction. 2. DESCRIPTION OF THE TRIAL HARBOUR 2. Description of Area. AREA 3. Methods and Nomenclature. Trial Harbour, latitude 41 0 59' S., consists of 4. The Physical Environment. a reef extending a few chains out to sea in a north­ 5. Ecology of the Reef. westerly direction and some smaller reefs along the coast with boulder beaches. The roadstead is 6. Notes on nearby Areas. narrow. 7. Discussion. To the north of Trial Harbour the coastline 8. Acknowledgements. consists of rocky cliffs trending generally in a 9. References. north-westerly direction. The cliffs are only feebly incised by watercourses and there are few boulder ABSTRACT beaches. To the south of Trial Harbour there are three low rocky headlands interspaced by beaches. A description is given on the zonation and general The beaches are composed of yellow quartzose ecology of a reef on the exposed West Coast of rcunded grit fragments forming a rather soft gritty Tasmania. The reef shows the unusual feature sand. The hard packing of sand found on many of a Hormosira-Corallina belt on an exposed coast. ocean beaches is lacking here. There was evidence A white species of Lithothamnion which is con­ in November, 1956, of a very considerable removal sidered to be characteristic of cold water con­ by marine agencies of sand from one beach to the ditions occurs there.
    [Show full text]
  • Low Global Sensitivity of Metabolic Rate to Temperature in Calcified Marine Invertebrates
    Oecologia DOI 10.1007/s00442-013-2767-8 PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates Sue‑Ann Watson · Simon A. Morley · Amanda E. Bates · Melody S. Clark · Robert W. Day · Miles Lamare · Stephanie M. Martin · Paul C. Southgate · Koh Siang Tan · Paul A. Tyler · Lloyd S. Peck Received: 11 December 2012 / Accepted: 29 August 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Metabolic rate is a key component of energy of calcified invertebrates (bivalves, gastropods, urchins budgets that scales with body size and varies with large- and brachiopods), using a single consistent methodology, scale environmental geographical patterns. Here we con- including 11 species whose SMR was described for the duct an analysis of standard metabolic rates (SMR) of first time. SMR of 15 out of 17 species had a mass-scaling marine ectotherms across a 70° latitudinal gradient in exponent between 2/3 and 1, with no greater support for both hemispheres that spanned collection temperatures of a 3/4 rather than a 2/3 scaling exponent. After accounting 0–30 °C. To account for latitudinal differences in the size for taxonomy and variability in parameter estimates among and skeletal composition between species, SMR was mass species using variance-weighted linear mixed effects mod- normalized to that of a standard-sized (223 mg) ash-free elling, temperature sensitivity of SMR had an activation dry mass individual. SMR was measured for 17 species energy (Ea) of 0.16 for both Northern and Southern Hemi- sphere species which was lower than predicted under the metabolic theory of ecology (Ea 0.2–1.2 eV).
    [Show full text]