Adaptive Management of Temperate Reefs to Minimise Effects of Climate Change: Developing New Effective Approaches for Ecological Monitoring and Predictive Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Management of Temperate Reefs to Minimise Effects of Climate Change: Developing New Effective Approaches for Ecological Monitoring and Predictive Modelling Neville Barrett, Amanda Bates, Maria Beger, Rick Stuart-Smith, Craig Syms, Neil Holbrook, Nathan Knott, David Booth, Brendan Kelaher, Stefan Howe, Colin Buxton and Graham Edgar FRDC Project 2010/506 The Institute for Marine and Antarctic Studies (IMAS), established in 2010, comprises the University of Tasmania’s internationally recognised expertise across the full spectrum of temperate marine, Southern Ocean, and Antarctic research and education. September 2014 IMaS – Sandy Bay Building 49 (between the law Building & the University gym) Cnr alexander street & grosvenor street sandy Bay tasmania australia telephone: +61 3 6226 2937 Postal address: Private Bag 129, Hobart tas 7001 IMaS – taroona nubeena Crescent taroona tasmania australia telephone: +61 3 6227 7277 Postal address: Private Bag 49, Hobart tas 7001 www.imas.utas.edu.au translatingnatureintoknowledge Adaptive management of temperate reefs to minimise effects of climate change: Developing new effective approaches for ecological monitoring and predictive modelling Neville Barrett, Amanda Bates, Maria Beger, Rick Stuart-Smith, Craig Syms, Neil Holbrook, Nathan Knott, David Booth, Brendan Kelaher, Stefan Howe, Colin Buxton, and Graham Edgar. September 2014 FRDC Project No 2010/506 © 2014 Fisheries Research and Development Corporation. All rights reserved. ISBN 978-1-86295-770-1 Adaptive management of temperate reefs to minimise effects of climate change: Developing new effective approaches for ecological monitoring and predictive modelling] Project No. 2010/506 2014 Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and the University of Tasmania. This publication (and any information sourced from it) should be attributed to Barrett, N., Bates, A., Beger, M., Syms, C., Holbrook, N., Knott, N., Booth, D., Kelaher, B., Howe, S., Buxton, C. and Edgar, G. University of Tasmania, Institute for Marine and Antarctic Studies, 2014, Adaptive management of temperate reefs to minimise effects of climate change: Developing new effective approaches for ecological monitoring and predictive modelling, Hobart, May. Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode. Inquiries regarding the licence and any use of this document should be sent to: [email protected]. Disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the Federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. Researcher Contact Details FRDC Contact Details Name: Neville Barrett Address: 25 Geils Court Address: IMAS, Uni of Tas, Locked Bag 49, Hobart 7001 Deakin ACT 2600 Phone: 02 6285 0400 Phone: 03 62277210 Fax: 02 6285 0499 Fax: 0362278035 Email: [email protected] Email: [email protected] Web: www.frdc.com.au In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form. 1 Contents Contents .................................................................................................................................................. 2 Acknowledgments ................................................................................................................................. 5 Executive Summary .............................................................................................................................. 6 Introduction ......................................................................................................................................... 10 Objectives ............................................................................................................................................. 12 Report Structure ................................................................................................................................. 13 Methods ................................................................................................................................................ 14 Methods for Objective 1 ..................................................................................................................14 Methods for Objective 2 ..................................................................................................................17 Methods for Objective 3 ..................................................................................................................17 Methods for Objective 4 ..................................................................................................................19 Extension .........................................................................................................................................20 Results .................................................................................................................................................. 21 Objective 1 .......................................................................................................................................21 Objective 2: ......................................................................................................................................31 Objective 3: ......................................................................................................................................39 Objective 4 .......................................................................................................................................50 Discussion ............................................................................................................................................. 94 Conclusion .......................................................................................................................................... 100 Implications ....................................................................................................................................... 101 Recommendations ............................................................................................................................. 103 Extension and Adoption .................................................................................................................... 105 Project coverage ................................................................................................................................ 108 References .......................................................................................................................................... 109 Project materials developed ............................................................................................................. 114 Appendices• ........................................................................................................................................ 115 Appendix i. Ecological traits and climate velocity explain range shifts in an ocean warming hotspot ............................................................................................................................................115 Appendix ii. Resilience and signatures of tropicalization in protected reef fish communities .....116 Appendix iii Statistical solutions for error and bias in global citizen science datasets .................152 2 Appendix iv. Distinguishing geographic range shifts from artefacts of detectability and sampling effort. ..............................................................................................................................182 Appendix v. Report from initial project workshop. August 2011. ................................................200 Tables Table 1. Predicted current per site abundance of fish species from LTTRMP and RLS data Table 2 Predicted current per site abundance of mobile invertebrate species from LTTRMP and RLS data Table 3. Summary of the central issues currently arising in SE Australia in response to a warming climate, potential management responses, and the information/monitoring requirements necessary to support these Figures Figure 1. Sites surveyed by the LTTRMP and RLS surveys between 1992 and 2013. Does not include additional sites surveyed by the Victorian MPA monitoring program (identical
Recommended publications
  • Mechanisms of Ecosystem Stability for Kelp Beds in Urban Environments
    Mechanisms of ecosystem stability for kelp beds in urban environments By Simon E Reeves November 2017 Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Institute for Marine and Antarctic Studies I DECLARATIONS This declaration certifies that: (i) This thesis contains no material that has been accepted for a degree or diploma by the University or any other institution. (ii) The work contained in this thesis, except where otherwise acknowledged, is the result of my own investigations. (iii) Due acknowledgement has been made in the text to all other material used (iv) The thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices. Signed: (Simon Reeves) Date: 1/12/2017 Statement of authority of access This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Signed: (Simon Reeves) Date: 1/12/2017 II 20/7/18 ABSTRACT Ecologists have long been interested in determining the role biotic relationships play in natural systems. Even Darwin envisioned natural systems as "bound together by a web of complex relations”, noting how “complex and unexpected are the checks and relations between organic beings” (On the Origin of Species, 1859, pp 81-83). Any event or phenomenon that alters the implicit balance in the web of interactions, to any degree, can potentially facilitate a re-organisation in structure that can lead to a wholescale change to the stability of a natural system. As a result of the increasing diversity and intensity of anthropogenic stressors on ecosystems, previously well-understood biotic interactions and emergent ecological functions are being altered, requiring a reappraisal of their effects.
    [Show full text]
  • REEF FISH BIODIVERSITY on KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program
    2006-2007 Kangaroo Island Natural Resources ManagementDate2007 Board Kangaroo Island Natural Resources Management Board REEF FISH BIODIVERSITYKangaroo Island Natural ON Resources KANGAROO Management ISLAND Board SEAGRASS FAUNAL BIODIVERSITYREPORT TITLE ON KI Reef Fish Biodiversity on Kangaroo Island 1 REEF FISH BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Daniel Brock Martine Kinloch December 2007 Reef Fish Biodiversity on Kangaroo Island 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4312 Fax: (08) 8553 4399 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4340 Fax: (08) 8553 4399 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board.
    [Show full text]
  • The Recent Mollusca of Tasmania
    J View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access Repository THE RECENT MOLLUSCA OF TASMANIA, By Mary Lodder. Tasmania may be considered fairly rich in recent mol- luscan species, as she possesses nearly 700 marine forms, with about 100 terrestrial and fresh-water kinds besides. Very many o* ^e species in all branches are extremely small, requiring much careful search in order to obtain them, and microscopical examination to reveal their char- acteristics, their beauties of form, sculpture, and colouring. But such work is well repaid by the results, whilst, doubt- less, there are still various species to be discovered in the less well-known parts of the island, for many of the recog- nised forms are very local in their habitats, and, in numerous cases, their minuteness renders them so difficult to find that even an experienced collector niay overlook them. On the other hand, some of the marine species afford a strong contrast by the great size to which they at- tain, the most remarkable being Valuta mamilla (Gray), which is a foot long when full grown, and broad in propor- tion ; but adult specimens are rarely found in good preserva- tion. The young examples are much prettier as regards colour and markings, having brown bands and dashes on a creamy-yellow ground externally, -while the interior is of a rich yellow, and highly enamelled ; the large mamillary nucleus (which was thought to be a deformity in the first specimen discovered) is always a striking characteristic, giving a curious appearance to the very young shells.
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • SUTTON"'-'-Paoijio Gull
    54 The S.A. Ornithologist; April 1, 193f>' SUTTON"'-'-Paoijio Gull. Gabianus pacificus, Pacific Gull. By J. Sutton. Th!~ .hird, the largest of the A~straIian Gulls, which ranges from Shark's Bay; 'IN.A., to Rcckhampton, Q., including 'I'as.. mania, is round about the South Australian coasts and adjacent i~lands, its prominent feature being the large lance-shaped bill. The following is J. Gould's description of the adultc->-" Head, neck, upper part of the back, all the under surface, upper and under tail coverts, white; back and wings, dark slaty black, the secondaries largely tipped with white, primaries black, the innermost slightly tipped with white; tail, .white, the inner web of the outer feather and both webs of' the remainder crossed near the tip with a broad band of black; irides, pearl white; eyelid; yellow; bill, orange stained with blood-red at the tip, in the midst of which in some specimens ate til few blotches of black; legs, yellow; claws, bla<lk." . Professor J. B. Cleland, in Transactions and Proceedings of the Royal Society of South Australia; Vol. XLVII, 1925, pp. 119-126, on The Birds df the Pearson Islands, wrote:-" A full­ plumaged female bird, in attempting to steal g, bait, got entangled in a fishing line that had been temporarily left unattended. Iris, white; eyelid, orange; base of bill, chrome; distal third of bill, ted with dark grey along the cutting edge; inside of bill, chrome; tongue and floor of mouth between rami of lower bill, orange: g~pe, .orange, except fot a narrow chrome..coloured outer edge; legs, maize yellow; total length, 58.4 cm.; span across out.
    [Show full text]
  • Proceedings of the American Samoa Coral Reef Fishery Workshop
    Proceedings of the American Samoa Coral Reef Fishery Workshop Stacey Kilarski and Alan R. Everson (Editors) U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-114 Proceedings of the American Samoa Coral Reef Fishery Workshop Convention Center, Utulei, American Samoa October 21-23, 2008 Edited by: Stacey Kilarksi AECOS, Inc. 45-939 Kamehameha Highway Suite 104 Kane‘ohe, HI 96744 Alan R. Everson Pacific Islands Regional Office, NMFS Habitat Conservation Division 1601 Kapiolani Blvd Suite 1110 Honolulu, HI 96814 [email protected] NOAA Technical Memorandum NMFS-F/SPO-114 U.S. Department of Commerce Gary Locke, Secretary of Commerce National Oceanic and Atmospheric Administration Jane Lubchenco, Ph.D., Administrator of NOAA National Marine Fisheries Service Eric C. Schwaab, Assistant Administrator for Fisheries Suggested citation: Kilarski, Stacey, and Alan Everson (eds.). Proceedings of the American Samoa Coral Reef Fishery Workshop (October 2008). U.S. Dep. Commerce, NOAA Tech. Memo. NMFS- F/SPO114, 143 p. A copy of this report may be obtained from: Alan R. Everson Pacific Islands Regional Office, NMFS Habitat Conservation Division 1601 Kapiolani Blvd Suite 1110 Honolulu, HI 96814 [email protected] Or online at: http://spo.nmfs.noaa.gov/tm/ American Samoa Coral Reef Fishery Workshop Convention Center, Utulei, American Samoa October 21-23, 2008 Organizers: NOAA-Pacific Island Regional Office NOAA-Pacific Island Fishery Science Center Department
    [Show full text]
  • Map 17A − Simplified Geology
    MINERAL RESOURCES TASMANIA MUNICIPAL PLANNING INFORMATION SERIES TASMANIAN GEOLOGICAL SURVEY MAP 17A − SIMPLIFIED GEOLOGY AND AREAS OF HIGHEST MINERAL RESOURCES TASMANIA Tasmania MINERAL EXPLORATION AND MINING POTENTIAL ENERGY and RESOURCES DEPARTMENT of INFRASTRUCTURE SNOW River HILL Cape Lodi BADA JOS psley A MEETUS FALLS Swan Llandaff FOREST RESERVE FREYCINET Courland NATIONAL PARK Bay MOULTING LAGOON LAKE GAME RESERVE TIER Butlers Pt APSLEY LEA MARSHES KE RAMSAR SITE ROAD HWAY HIG LAKE LEAKE Cranbrook WYE LEA KE RIVER LAKE STATE RESERVE TASMAN MOULTING LAGOON MOULTING LAGOON FRIENDLY RAMSAR SITE BEACHES PRIVATE BI SANCTUARY G ROAD LOST FALLS WILDBIRD FOREST RESERVE PRIVATE SANCTUARY BLUE Friendly Pt WINGYS PARRAMORES Macquarie T IER FREYCINET NATIONAL PARK TIER DEAD DOG HILL NATURE RESERVE TIER DRY CREEK EAST R iver NATURE RESERVE Swansea Hepburn Pt Coles Bay CAPE TOURVILLE DRY CREEK WEST NATURE RESERVE Coles Bay THE QUOIN S S RD HAZA THE PRINGBAY THOUIN S Webber Pt RNMIDLAND GREAT Wineglass BAY Macq Bay u arie NORTHE Refuge Is. GLAMORGAN/ CAPE FORESTIER River To o m OYSTER PROMISE s BAY FREYCINET River PENINSULA Shelly Pt MT TOOMS BAY MT GRAHAM DI MT FREYCINET AMOND Gates Bluff S Y NORTH TOOM ERN MIDLA NDS LAKE Weatherhead Pt SOUTHERN MIDLANDS HIGHWA TI ER Mayfield TIER Bay Buxton Pt BROOKERANA FOREST RESERVE Slaughterhouse Bay CAPE DEGERANDO ROCKA RIVULET Boags Pt NATURE RESERVE SCHOUTEN PASSAGE MAN TAS BUTLERS RIDGE NATURE RESERVE Little Seaford Pt SCHOUTEN R ISLAND Swanp TIE FREYCINET ort Little Swanport NATIONAL PARK CAPE BAUDIN
    [Show full text]
  • Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13].
    [Show full text]
  • Great Australian Bight BP Oil Drilling Project
    Submission to Senate Inquiry: Great Australian Bight BP Oil Drilling Project: Potential Impacts on Matters of National Environmental Significance within Modelled Oil Spill Impact Areas (Summer and Winter 2A Model Scenarios) Prepared by Dr David Ellis (BSc Hons PhD; Ecologist, Environmental Consultant and Founder at Stepping Stones Ecological Services) March 27, 2016 Table of Contents Table of Contents ..................................................................................................... 2 Executive Summary ................................................................................................ 4 Summer Oil Spill Scenario Key Findings ................................................................. 5 Winter Oil Spill Scenario Key Findings ................................................................... 7 Threatened Species Conservation Status Summary ........................................... 8 International Migratory Bird Agreements ............................................................. 8 Introduction ............................................................................................................ 11 Methods .................................................................................................................... 12 Protected Matters Search Tool Database Search and Criteria for Oil-Spill Model Selection ............................................................................................................. 12 Criteria for Inclusion/Exclusion of Threatened, Migratory and Marine
    [Show full text]
  • 250 State Secretary: [email protected] Journal Editors: [email protected] Home Page
    Tasmanian Family History Society Inc. PO Box 191 Launceston Tasmania 7250 State Secretary: [email protected] Journal Editors: [email protected] Home Page: http://www.tasfhs.org Patron: Dr Alison Alexander Fellows: Dr Neil Chick, David Harris and Denise McNeice Executive: President Anita Swan (03) 6326 5778 Vice President Maurice Appleyard (03) 6248 4229 Vice President Peter Cocker (03) 6435 4103 State Secretary Muriel Bissett (03) 6344 4034 State Treasurer Betty Bissett (03) 6344 4034 Committee: Judy Cocker Margaret Strempel Jim Rouse Kerrie Blyth Robert Tanner Leo Prior John Gillham Libby Gillham Sandra Duck By-laws Officer Denise McNeice (03) 6228 3564 Assistant By-laws Officer Maurice Appleyard (03) 6248 4229 Webmaster Robert Tanner (03) 6231 0794 Journal Editors Anita Swan (03) 6326 5778 Betty Bissett (03) 6344 4034 LWFHA Coordinator Anita Swan (03) 6394 8456 Members’ Interests Compiler Jim Rouse (03) 6239 6529 Membership Registrar Muriel Bissett (03) 6344 4034 Publications Coordinator Denise McNeice (03) 6228 3564 Public Officer Denise McNeice (03) 6228 3564 State Sales Officer Betty Bissett (03) 6344 4034 Branches of the Society Burnie: PO Box 748 Burnie Tasmania 7320 [email protected] Devonport: PO Box 587 Devonport Tasmania 7310 [email protected] Hobart: PO Box 326 Rosny Park Tasmania 7018 [email protected] Huon: PO Box 117 Huonville Tasmania 7109 [email protected] Launceston: PO Box 1290 Launceston Tasmania 7250 [email protected] Volume 29 Number 2 September 2008 ISSN 0159 0677 Contents Editorial ................................................................................................................
    [Show full text]
  • 國立中山大學海洋生物研究所碩士論文指導教授︰劉莉蓮博士台灣西海岸蚵岩螺(Thais Clavigera)
    國立中山大學海洋生物研究所碩士論文 指導教授︰劉莉蓮博士 台灣西海岸蚵岩螺(Thais clavigera) 之族群遺傳結構 研究生︰謝榮昌撰 中華民國 九十 年 六 月 二十九 日 台灣西海岸蚵岩螺(Thais clavigera) 之族群遺傳結構 國立中山大學海洋生物研究所碩士論文摘要 研究生:謝榮昌 指導教授︰劉莉蓮博士 本文係利用蛋白質電泳技術,分析台灣西海岸蚵岩螺(Thais clavigera)族 群遺傳結構;探討地點(香山、台西、布袋、七股),成熟度(成熟、未成熟) 以及時間(1999.7~2000.3、2000.11)三因子,對蚵岩螺族群遺傳結構之影響。 結果顯示 11 個基因座中,僅 Ark、Lap-1、Lap-2、Pgm-1 四個為多型性基因座。 地點間平均基因異質性(mean heterozygosity, H)介於 0.100~0.129 之間,遺傳距 離(genetic distance , D)介於 0.0005~0.0029 之間,因此台灣西海岸蚵岩螺可視 為同一族群。但族群分化現象仍然存在,分化差異是由 Ark 基因座造成,依族群 分化差異排序為香山、布袋、台西、七股。此外,Ark 基因座之異質性在四個地 點都有隨著蚵岩螺體型的增大有提高的趨勢,平均基因異質性亦有相同的趨勢, 而不同採樣時間對遺傳結構的影響不大。由本實驗結果推測,蚵岩螺生殖生態和 環境因子(環境品質和地形),可能是造成台灣西海岸蚵岩螺族群遺傳結構相似 度高的重要因素。 III Genetic structure of populations of oyster drill(Thais clavigera) along the west coast of Taiwan Yung-Chang Hsieh (Advisor : L. L. Liu ) Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R. O. C. Thesis abstract The genetic structure of oyster drill Thais clavigera along the west coast of Taiwan were assayed by starch gel electrophoresis. Factors of locality(i.e. Shainsan, Taisi, Budai, Chiku),maturity(i.e. mature, immature) and sampling time (i.e.1999.7~2000.3, 2000.11) were analyzed to evaluate their effects on drill‘s genetic structure . Four of the eleven investigated enzyme loci were polymorphic , i.e. Ark, Lap-1, Lap-2, and Pgm-1. Among the four populations , the mean heterozygosity (H)and genetic distances(D) ranged from 0.100 to 0.129 and from 0.0005 to 0.0029, respectively. Therefore, T. clavigera along the west coast of Taiwan belongs to the same population.
    [Show full text]