FAST45 Magazine

Total Page:16

File Type:pdf, Size:1020Kb

FAST45 Magazine DECEMBER 2009 FLIGHT AIRWORTHINESS SUPPORT 45 TECHNOLOGY E FAST N I Z A G A M L A C I N H C E T S U B R I A 5 4 T S A F JDUELCYEM2B0E0R7 2009 E N I Z A G A 405 M L FLIGHT A C AIRWORTHINESS I SUPPORT N H TECHNOLOGY C E T Introducing more eco-efficient S chemical treatments for aircraft structure 2 U Towards a chromate-free Airbus B François MUSEUX R Ralf THEILMANN I A Airbus new Auto Pilot/Flight Director TCAS mode 10 Publisher: Bruno PIQUET Enhancing flight safety during TCAS manoeuvres Lucas BLUMENFELD Editor: Paule BOTARGUES Page layout: Quat’coul Cover: A320 Family Air & Bleed Parts suspended on racks after TSA anodizing (courtesy of AEROLIA FRANCE) working group activities 16 Photo by Chromo Ouest From engineering to airline culture Authorization for reprint of FAST magazine articles should be requested Gilles JUAN from the editor at the FAST magazine e-mail address given below Customer Services Communications Claire AMSELLEM Tel: +33 (0)5 61 93 43 88 Fax: +33 (0)5 61 93 47 73 e-mail: [email protected] A300-600 Extended Service Goal Printer: Amadio Enabling longer lasting operation 22 FAST magazine may be read on Internet André DELANNOY http://www.airbus.com/en/services/publications/ Jean-Michel PASCUAL ISSN 1293-547 6 © AIRBUS S.A.S. 2009. AN EADS COMPANY A300 All rights reserved. Proprietary document First roll-out 31 By taking delivery of this magazine (hereafter “magazine”), you accept on behalf of your company to comply with the following. No other property rights are granted by the Customer Services delivery of this magazine than the right to read it, for the sole purpose of information. This magazine, its content, illustrations and photos shall not be modified nor Events 32 reproduced without prior written consent of Airbus S.A.S. This magazine and the materials it contains shall not, in whole or in part, be sold, rented, or licensed to any third party subject to payment or not. This magazine may contain market-sensitive or Customer Services Worldwide other information that is correct at the time of going to press. This information involves Around the clock... Around the world 33 a number of factors which could change over time, affecting the true public representation. Airbus assumes no obligation to update any information contained in this document or with respect to the information described herein. The statements made herein do not constitute an offer or form part of any contract. They are based on Airbus information and are expressed in good faith but no warranty or representation is given as to their accuracy. When additional information is required, Airbus S.A.S can be contacted to provide further details. Airbus S.A.S shall assume no liability for any damage in connection with the use of this magazine and the materials it contains, even if Airbus S.A.S has been advised of the likelihood of such damages. This licence is governed by French law and exclusive jurisdiction is given to the courts and tribunals of Toulouse (France) without prejudice to the right of Airbus to bring proceedings for infringement of copyright or any other intellectual property right in any other court of competent jurisdiction. Airbus, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380 and A400M are registered trademarks. This issue of FAST magazine has been printed 5 on paper produced without using chlorine, to reduce 4 Photo copyright Airbus T Photo credits: waste and help conserve natural resources. S A Airbus Photographic Library, e xm company, Airbus Operations S.A.S. Every little helps! F 1 MORE ECO-EFFICIENT CHEMICAL TREATMENTS FOR AIRCRAFT STRUCTURE - TOWARDS A CHROMATE-FREE AIRBUS Introducing more eco-efficient chemical treatments for aircraft structure Towards a chromate-free Airbus The future of the aircraft industry’s impact on the anticipating the future regulatory framework at the environment is paramount to Airbus, continuously earliest possible stage in design, rather than searching for more eco-efficient values, from the implementing reactive solutions, has proved to be first step of the design and throughout the aircraft’s the most appropriate response to the various entire life cycle (see figure 1). Airbus integrated growing environmental challenges. Therefore, eco-efficiency values into its core strategy and was Airbus has launched initiatives to progressively the first aeronautical company to obtain the ISO replace the most hazardous substances and proces- 14001 environmental certification for all its ses. This article introduces the Airbus roadmap for European Union (EU) manufacturing sites and replacing chromate containing materials and pro- product related activities. Proactive approach, cesses with more environmentally friendly ones. François MUSEUX Ralf THEILMANN Expert ACF Project Manager Materials and Technologies Engineering Structure Airbus Customer Services Materials and Processes 5 4 Airbus Engineering T S A F 2 MORE ECO-EFFICIENT CHEMICAL TREATMENTS FOR AIRCRAFT STRUCTURE - TOWARDS A CHROMATE-FREE AIRBUS Aircraft life cycle Inventing new best practices figure 1 to disassemble and recycle end-of-life Investing in research to aircraft design cleaner aircraft Optimizing aircraft operations Managing the and maintenance for enhanced supply chain environmental performance for a shared vision of environmental responsibility notes Mitigating the impact of manufacturing on the environment thanks Chromium is a chemical to cleaner technologies and processes element that has the symbol Cr and atomic number 24. It is a steely-grey, lustrous, hard metal Chromate usage that takes a high polish and has a high melting point. The name Among a number of initiatives in chromium trioxide, zinc and po- of the element is derived from that respect, the Airbus Chromate- tassium chromate), are often found the Greek word ‘chroma’ meaning Free (ACF) project aims to in numerous processes such as: colour; many of its compounds progressively develop new eco- • Surface treatment applications: being intensely coloured. efficient alternatives to all appli- - Chromic acid anodising, cations and processes using - Acidic etching (pickling), Hexavalent chromium refers chromates (see figure 2) and offer - Conversion coatings, to chemical compounds that these new solutions widely, - Hard chrome plating. contain the element chromium bringing an overall benefit • Painting and bonding processes: in the +6 oxidation state. Usually throughout the life cycle of the - External and internal painting, such compounds are chromium aircraft, including for maintenance - Bonding primer, trioxide or the chromic acid operations. - Sealants. or dichromic acid. Chromate salts • And other additional have a yellowish colour, The ACF project involves all applications: dichromate salts are orange. stakeholders and the milestones - Electrical and electronic Chromium VI compounds for elimination of chromates. applications. are a synonym for Chromium Comprehensive research studies Hexavalent: Cr(VI). have been conducted for years. The hazardous properties of these The ACF project was initiated in substances and the resultant 2006 to ensure that mature regulatory pressure for repla- alternative options and technical cement have recently reinforced ACF roadmap solutions be available for all the need to replace them with less Airbus programmes without hazardous substances. compromising technical perfor- figure 2 mance and quality. de For over 50 years, hexavalent cr ea se chromium has been used as o f c corrosion-inhibiting compounds hro ma with the protection of metallic tes us surfaces as one of its most e important applications. Thanks to chromates, the protection was ensured for the 30-year aircraft lifespan without compromising flight safety, even in extremely 5 4 severe conditions. Chromates T 2006 2007 2008 2009 2010 2011 S A (such as strontium chromate, F 3 MORE ECO-EFFICIENT CHEMICAL TREATMENTS FOR AIRCRAFT STRUCTURE - TOWARDS A CHROMATE-FREE AIRBUS The main They are already subject to a formal ban under the European regulatory Directive 2002/95/EC so called framework RoHS (Restriction of Hazardous Substances) for electronic and Numerous regulations in various electrical equipment, even if on- countries and regions now strictly board equipment is today excluded restrict the use, production, from the scope of RoHS. Stringent storage, elimination or marketing occupational health and safety of chromates. requirements also regulate expo- sure to these chemicals. Chromates In Europe, most of the chromates are already banned within the are considered as highly automotive sector. hazardous, with very high con- cerns according to the newly Since 2006, the new Occupational adopted REACH* European Safety and Health Administration regulation (EC n°1907/2006). (OSHA*) regulation introduced in Chromate compounds will the USA regarding hexavalent certainly be subject to formal and chromium, has considerably low- time limited authorization for ered the Permissible Exposure further use (sodium chromate has Limit (PEL) for airborne exposure recently been introduced in the inducing very strict controls of the REACH* candidate list by the exposure to this chemical. European Chemicals Agency). information * REACH (Registration, * OSHA Evaluation, Authorisation (Occupational Safety and restriction and Health Administration) of Chemicals The United States OSHA is an agency - EC n°1907/2006) of the United States Department This new regulation aims to improve of Labor. Its mission is to prevent health and environment protection work-related injuries, illnesses,
Recommended publications
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • A World of Expertise
    Capability list A world of expertise Member of the Lufthansa Technik Group 2 Qualification for personnel in the aviation industry Addressing the industry’s need for training excellence Effective training methods The success of an aviation business depends on the Basic training, type training and competence training – quality, efficiency, safety and flexibility of its operations, each one of these areas in Lufthansa Techncial Training’s be they in the air or on the ground. Although state-of-the- portfolio are provided using different methods. The training art technology and systems are an important part of the takes place either in a classroom setting led by an instructor, equation, the crucial variable is the qualification of your in dedicated workshops, in a maintenance environment most important asset – your employees. Knowledge, skill, or as a trainee-paced, state-of-the-art e-learning course. attitude and creativity are the key differentiators. And those In order to implement all of these options as best as are the result of training. possible, courses are designed in line with the “blended That is why more than 600 companies working in aviation training” principle – optimum training is a mix of diverse, manufacturing, in maintenance, repair and overhaul (MRO) yet compatible and complementary training methods. and in other aviation-related fields worldwide trust Lufthansa The success of Lufthansa Technical Training’s model comes Technical Training – a company built on more than 50 years from a modular approach to training. This concept makes of experience in aircraft maintenance and operations opti- it easy to select just the right amount of training to suit the mization.
    [Show full text]
  • 11ADOBL04 December 2010
    11ADOBL04 December 2010 Use of rudder on Airbus A300-600/A310 (extracted from former FCOM Bulletin N°15/1 – Subject N°40) Reason for issue On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French Bureau d'Enquêtes et d'Analyses (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design lim- its and even lead to structural failure. The purpose of this Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rud- der control design characteristics. Yaw control General In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer. The rudder and vertical stabilizer are sized to meet the two following objectives: Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter). Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground). The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft. The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer. Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetric loads due to engine failure) leading to the required level of structural strength.
    [Show full text]
  • FAST Magazine Issue 22
    Cover FAST 11/03/98 21:55 Page 1 FAST 22/p1 ˆ p6 11/03/98 23:45 Page 1 AIRBUS TECHNICAL DIGEST NUMBER 22 MARCH 1998 HYDRAULIC SYSTEM PREVENTING LEAKS 22 JEROME QUENESCOURT FUEL SYSTEM DETECTING LEAKS USING HELIUM 77 ALAIN MARECHAL AND ALAIN DENINOTTI THE INTERNATIONAL REGULATORY CLIMATE ANDREW S. Mc CLYMONT 1111 IMPLEMENTING JAR-OPS WITH AIRBUS INDUSTRIE OPERATIONAL DOCUMENTATION 1717 GUY DI SANTO THE PORTABLE WATER DETECTION TOOL FOR A300/A300-600/A310 AIRCRAFT 2121 RENE SAVOIE AND MARIE-SOPHIE CALAIS LIGHTNING STRIKES AND AIRBUS FLY-BY-WIRE AIRCRAFT CAPTAIN CHRIS KRAHE 2525 AIM-FANS WINS GROWING NUMBER OF ORDERS JEAN-PIERRE DAMBRINE 2828 CUSTOMER SERVICES CONFERENCES 3030 THE FIRST AVIATION REGULATION? 3131 RESIDENT CUSTOMER SUPPORT REPRESENTATION 3232 The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus Industrie. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. © AIRBUS INDUSTRIE 1998 Publisher: Airbus Industrie Customer Services, 1 rond-point Maurice Bellonte, 31707 Blagnac Cedex, France Editor: Denis Dempster, Product Marketing Telephone +33 (0)5 61 93 39 29, Telex AIRBU 530526F, Telefax +33 (0)5 61 93 27 67 Graphic design: Agnès Lacombe, Customer Services Marketing Photo-engraving: Passion Graphic, 60 boulevard Déodat de Séverac, 31027 Toulouse Cedex, France Printer: Escourbiac, 5 avenue Marcel Dassault, 31502 Toulouse Cedex, France This issue of FAST has been printed on paper produced without using chlorine, to reduce waste and help to conserve natural resources.
    [Show full text]
  • Flight Safety DIGEST OCTOBER 2005
    Flight Safety DIGEST OCTOBER 2005 Analysis of CREW CONVERSATIONS Provides Insights for Accident Investigation Flight Safety Digest Flight Safety Foundation For Everyone Concerned With the Safety of Flight Vol. 24 No. 10 October 2005 www.fl ightsafety.org OFFICERS AND STAFF Chairman, Board of Governors Amb. Edward W. Stimpson President and CEO Stuart Matthews In This Issue Executive Vice President Robert H. Vandel General Counsel and Secretary Kenneth P. Quinn, Esq. Treasurer David J. Barger Analysis of Crew Conversations ADMINISTRATIVE Provides Insights for Accident Manager, Support Services Linda Crowley Horger Investigation 1 New methods of examining recorded voice communications FINANCIAL can help investigators evaluate interactions between fl ight Accountant Millicent Wheeler crewmembers and determine the quality of the work environment on the fl ight deck. MEMBERSHIP Director, Membership and Development Ann Hill On-board Fatalities Lowest Membership Services STATS Coordinator Ahlam Wahdan Since 1984 for Large Commercial Jets Membership Services Coordinator Namratha Apparao Boeing data assembled according to a new taxonomy created by an international team indicate that controlled fl ight into PUBLICATIONS terrain and loss of control in fl ight were, by a considerable margin, the leading causes of on-board fatalities in accidents Senior Editor Mark Lacagnina 18 from 1987 through 2004. Senior Editor Wayne Rosenkrans Senior Editor Linda Werfelman Associate Editor Rick Darby Ethics Is a Safety Issue Web and Print Y Production Coordinator Karen K. Ehrlich ‘Data smoothing,’ ‘pencil whipping,’ ‘normalization of Production Designer Ann L. Mullikin deviance’ — they’re all tempting shortcuts against which Production Specialist Susan D. Reed LIBRAR aviation personnel must take a principled stand in a safety Librarian, Jerry Lederer culture.
    [Show full text]
  • EASA.A.172 A300, A310, and A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES ...................................................................................................................
    [Show full text]
  • Aviation Profiles and Cases
    Ashfords has unique air accident claims and aviation expertise - AVIATION specialist lawyers have represented the victims of air accidents PROFILES AND dating back to 1977. The Aviation Team is dedicated to representing injured victims CASES and families who have lost loved ones as a result of aviation accidents around the world. The head of the Aviation Team is Jim Morris, a RAF pilot for 12 years before qualifying as a barrister to specialise in air accident litigation. The Team’s class leading expertise means that Ashfords has the resources and ability to act in all types of air accidents, from single engine pleasure flights to major airline disasters and acts of terrorism. Ashfords LLP ashfords.co.uk THE AVIATION TEAM Jim Morris Stephen Walker Partner & Barrister Legal Director Head of the Aviation Team [email protected] [email protected] Mobile +44 (0)7974 244769 Mobile +44 (0)7850 506057 Jim specialises in representing the victims of Stephen is a Legal Director in the Aviation Team. He has international air accidents. He was a professionally dealt with a wide range of civil litigation matters over the qualified Royal Air Force pilot prior to becoming an past 28 years. He advises private individuals, sole traders aviation lawyer, and has over 26 years’ experience in and small/medium enterprises in relation to civil litigation aviation and litigation. matters including misrepresentation/ estoppel, breach of contract, defamation, debt recovery, professional During Jim’s 12 years as a pilot, he was qualified on a negligence and high value personal injury cases. number of military aircraft (single piston, single turbo prop, fast jet, twin turbo prop, heavy jet) and his last Prior to joining Ashfords, Stephen worked for the TSB flying tour was on the Boeing E-3D AWACS.
    [Show full text]
  • EASA.A.172 Issue 4 Airbus A300 A310 A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 66 An agency of the European Union Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 67 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES .................................................................................................................... 8 2.1 Certified model : A300 B1 ....................................................................................................... 8 2.2 Powerplant .............................................................................................................................. 8 2.3 Maximum Weights (kg) ..........................................................................................................
    [Show full text]
  • How Airbus Surpassed Boeing: a Tale of Two Competitors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2007 How Airbus Surpassed Boeing: A Tale of Two Competitors William Alexander Burns University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Burns, William Alexander, "How Airbus Surpassed Boeing: A Tale of Two Competitors. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/252 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by William Alexander Burns entitled "How Airbus Surpassed Boeing: A Tale of Two Competitors." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Richard Ranaudo, U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by William A. Burns entitled “How Airbus Surpassed Boeing: A Tale of Two Competitors” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
    [Show full text]
  • In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001
    National Transportation Safety Board Washington, D.C. 20594 PRSRT STD OFFICIAL BUSINESS Postage & Fees Paid Penalty for Private Use, $300 NTSB Permit No. G-200 In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 Aircraft Accident Report NTSB/AAR-04/04 PB2004-910404 Notation 7439B National National Transportation Transportation Safety Board Safety Board Washington, D.C. Washington, D.C. Aircraft Accident Report In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 RAN S P T O L R A T LUR IBUS A N P UNUM E O T I I O T A N N S A D FE R NTSB/AAR-04/04 T Y B OA PB2004-910404 National Transportation Safety Board Notation 7439B 490 L’Enfant Plaza, S.W. Adopted October 26, 2004 Washington, D.C. 20594 National Transportation Safety Board. 2004. In-Flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 12, 2001. Aircraft Accident Report NTSB/AAR-04/04. Washington, DC. Abstract: This report explains the accident involving American Airlines flight 587, an Airbus Industrie A300-605R, N14053, which crashed into a residential area of Belle Harbor, New York, following the in-flight separation of the airplane’s vertical stabilizer and rudder. The safety issues discussed in this report focus on characteristics of the A300-600 rudder control system design, A300-600 rudder pedal inputs at high airspeeds, aircraft-pilot coupling, flight operations at or below an airplane’s design maneuvering speed, and upset recovery training programs.
    [Show full text]
  • Fluid Power Products on the Airbus A300 and A310
    Aerospace Marine Defense S1KFf Fluid Power Products On the Airbus A300 and A310 The Fluid Power Division of Vickers The A300, with seating capacity for up Other advantages of the A300 and A31 0 Aerospace Marine Defense Group, a to 315 passengers, and its smaller include: extremely low noise and air recognized leader in advanced partner the A31 0, with space for 21 0 to pollution levels; the latest in avionics; technology hydraulic and electro- 280 seats, are Airbus' entry into the improved cargo handling capability; and hydraulic components for aerospace, short to medium-range, wide-body a demonstrated high reliability rate. marine and defense vehicles, was commercial jet airliner market. Both The wide-body concept, which Airbus chosen to supply hydraulic pumps, aircraft are fitted with either Pratt & has incorporated into both the A300 and motorpumps, power transfer units and Whitney or General Electric turbofan the A31 0, has greatly increased the valves for the Airbus A300 and A31 0 engines which, combined with the operating efficiency of these aircraft over commercial jet airliners. Airbus Industry, high-lift wing design, make these aircraft earlier jet airliner designs. Because of a consortium comprised of cooperating two of the most efficient and economical its greater capacity for passengers and * airframe manufacturers from throughout jet airliners in use today. The A300 cargo, the A300 series requires fewer Western Europe, is headquartered in series' twin engine concept, along with scheduled frequencies to perform the Toulouse, France, where the aircraft other state-of-the-adt improvements in same productivity of the narrow-body components and subassemblies are engine design, has produced a 25% jets.
    [Show full text]
  • Driver Training 2 Contents
    Driver training 2 Contents Aircraft components-------------------------------------------Page 3 Commercial aircraft ID---------------------------------------- Page 4-66 Helicopter ID-----------------------------------------------------Page 67-68 Business Jet ID---------------------------------------------------Page 69-74 Light aircraft ID--------------------------------------------------Page 75-77 Military aircraft ID----------------------------------------------Page 78-83 Aircraft Dimensions-------------------------------------------- Page 84-91 Taxiway signage------------------------------------------------- Page 92 Phonetic Alphabet--------------------------------------------- Page 93 Radiotelephony------------------------------------------------- Page 94 3 Aircraft Components Fin (Vertical Stabiliser) Wingtip Rudder Tail (Empennage) Airbrakes / Spoilers (Jet Aileron Elevator engines only) Fuselage Flaps Wind Shield (Cockpit) Horizontal Stabiliser Main Gear Nose Gear Wing Engines (nacelle) Nose (Radar Cone) Undercarriage Airbus A200-100 (Formally CS100) 4 Note Airbus purchased a 50.01% majority stake in the CSeries program in October 2017, with the deal closing in July 2018. The Airbus A220, previously known as Bombardier CSeries (or C Series), is a family of narrow- body, twin-engine, medium-range jet airliners marketed by Airbus but designed and built by the Canadian manufacturer Bombardier Aerospace. Airbus A200-300 (Formally CS300) Key Features • Double Emergency exits over wing • Winglets • Engines appear oversized compared to
    [Show full text]