Receptors of the Enteric Nervous System: Potential Gut: First Published As 10.1136/Gut.47.Suppl 4.Iv20 on 1 December 2000

Total Page:16

File Type:pdf, Size:1020Kb

Receptors of the Enteric Nervous System: Potential Gut: First Published As 10.1136/Gut.47.Suppl 4.Iv20 on 1 December 2000 iv20 Gut 2000;(Suppl IV)47:iv20–iv22 Receptors of the enteric nervous system: potential Gut: first published as 10.1136/gut.47.suppl_4.iv20 on 1 December 2000. Downloaded from targets for drug therapy J Tack It is recognised that the enteric nervous system activation of a motilin receptor.9 However, (ENS) has a unique ability to mediate reflex direct muscular eVects are also involved in activity independently of input from the brain some of the eVects of motilides.13 Inhibitors of or spinal cord.1–4 This ability implies that the gastrointestinal motility, such as clonidine, ENS contains sensory receptors, primary botulinum toxin, or sumatriptan, may inhibit aVerent neurones, interneurones, and motor release of acetylcholine or stimulate the release neurones. The events that are controlled, at of nitric oxide from intrinsic neurones.14–17 least in part, by the ENS are multiple and The observation that drugs which are used include motor activity, secretion, absorption, clinically to alter gastrointestinal motility act blood flow, and interaction with other organs via the ENS confirms the view that the ENS is such as the gall bladder or pancreas.1–4 a valid target for the pharmacotherapy of The extensive regulatory activities of the gastrointestinal motor disorders. ENS are made possible by the presence and abundance of diVerent types of neurones The ENS as a target for achieving within the wall of the gastrointestinal tract. The improved specificity of pharmacological ENS contains about 108 neurones, approxi- actions mately the number of neurones found in the Pharmacological treatment of gastrointestinal spinal cord. Morphological, electrophysiologi- motility disorders is intended to stimulate or cal, and pharmacological studies have revealed inhibit motility. Established sites of action of a substantial diversity of neurones within the motility drugs are gastrointestinal smooth ENS. Moreover, a surprisingly large number of muscle, the ENS, autonomic ganglia, and the established or candidate neurotransmitters can central nervous system. Drugs acting at diVer- be found in enteric neurones. Most neurones ent sites may cause a similar net eVect on contain several of these substances, and gastrointestinal motility. Enhancement of distinctive patterns of colocalisation of media- gastrointestinal motility can be achieved by tors allow identification of diVerent functional direct stimulation of gastrointestinal smooth classes of neurones.23 The presence of recep- muscle, by activation of excitatory neural path- tors on enteric neurones is another expression ways, or by inhibition of inhibitory pathways. of their heterogeneity. Myenteric neurones can Similarly, inhibition of gastrointestinal motility http://gut.bmj.com/ express receptors for both peptide and non- can be achieved by a direct relaxant eVect on peptide (amines, amino acids, purines) gastrointestinal smooth muscle, by inhibition neurotransmitters.1–5 Generally, expression of a of excitatory neural pathways, or by activation receptor is limited to a subset of myenteric of inhibitory pathways. neurones, with probably the only exception When stimulation or inhibition of contractile being expression of nicotinic cholinergic recep- activity is achieved through agents that act tors on all myenteric neurones in the guinea pig directly on gastrointestinal smooth muscle (for on September 26, 2021 by guest. Protected copyright. stomach.67 Unfortunately, we know very little example, cholinergics, cholinesterase inhibi- about the relationship between the functional tors, nitrates, L-type calcium channel block- role of enteric neurones and their expression of ers), the eVect is often non-specifically present receptors. throughout the gastrointestinal tract. Motilides may be an exception to this, as smooth muscu- The ENS is a target for pharmacotherapy lar motilin receptors are mainly expressed in of gastrointestinal disorders the stomach and proximal small intestine in A number of drugs, which are used clinically to humans.18 alter gastrointestinal motility, act via the ENS. Most drugs aVecting gastrointestinal motil- Prokinetic drugs, such as cisapride, motilin and ity do so by acting as an agonist or antagonist at erythromycin, stimulate gastrointestinal motil- specific cellular receptors. Stimulation or inhi- ity at least in part through release of acetylcho- bition of contractile activity through receptors line from intrinsic cholinergic neurones.89Cis- on enteric neuronal circuitry oVers the poten- apride enhances cholinergic neurotransmission tial of achieving higher specificity. Serotonin 3 via activation of a presynaptic 5-hydroxy- (5-HT3) receptor antagonists, for example, Center for 810 tryptamine (5-HT)4 receptor. In addition, inhibit colonic motor activity in humans via a Gastroenterological cisapride has a direct postsynaptic excitatory neural pathway but they have no clearly Research, University Hospitals Leuven, eVect on a subpopulation of antral neurones, demonstrable eVect on gastric emptying 11 19 20 Herestraat 49, B-3000 which is not mediated by a 5-HT4 receptor. rate. Leuven, Belgium Indeed, non-serotonergic eVects have also been The selection of a drug therapy with optimal J Tack implicated in the prokinetic actions of cis- specificity requires both a precise knowledge of apride.12 Motilin and erythromycin can induce Correspondence to: Professor J Tack. prolonged depolarisation in a subset of neu- Abbreviations used in this paper: ENS, enteric [email protected] rones in the guinea pig stomach, possibly by nervous system; 5-HT, 5-hydroxytryptamine. www.gutjnl.com Receptors of the enteric nervous system: potential targets for drug therapy iv21 Gut: first published as 10.1136/gut.47.suppl_4.iv20 on 1 December 2000. Downloaded from Vagal afferent GI tract CNS ACh NO 5-HT? Vagal Interneurone Inhibitory efferent motor neurone Nicotinic receptor 5-HT receptor Figure 1 Neural pathways mediating gastric accommodation (animal studies). 5-HT,5-hydroxytryptamine; ACh, acetylcholine; NO, nitric oxide. the type of change in motor behaviour that is Excitatory Inhibitory required, as well as of the circuitry and the motor motor receptors that are involved in its control. This neurone neurone statement is best illustrated by an example. A subgroup of patients with functional dyspepsia has impaired accommodation of the proximal stomach to ingestion of a meal, and this is asso- ciated with symptoms of early satiety and ACh NO Sub P VIP weight loss.21 Several attempts have been made to improve defective gastric accommodation in these patients. Nitrates can enhance relaxation of the stomach after ingestion of a meal but produce several side eVects related to their action on extraintestinal smooth muscle.22 In 5-HT1P 5-HT3 the mouse and guinea pig, involvement of 5-HT Figure 2 5-Hydroxytryptamine (5-HT) receptors on receptors on intrinsic neurones in the vagally gastric myenteric neurones. ACh, acetylcholine; NO, nitric oxide; Sub P,substance P; VIP,vasoactive intestinal mediated gastric relaxation has been demon- peptide. http://gut.bmj.com/ strated (fig 1).23 Selective 5-HT re-uptake inhibitors act both centrally and peripherally to enhance the availability of physiologically re- circuitry and receptors that are involved in any 24 leased 5-HT. We demonstrated that a selective given motor phenomenon in humans. Unfortu- 5-HT reuptake inhibitor can enhance gastric nately, our knowledge of the ENS in humans is 25 accommodation to a meal in humans. How- extremely limited, and most of the information ever, probably because such drugs enhance the available is extrapolated from animal studies, as on September 26, 2021 by guest. Protected copyright. availability of 5-HT at vagal aVerents that are has been illustrated above. The availability of activated by 5-HT receptors, they are associ- 3 human tissue for physiological and pharmaco- ated with nausea. Hence they are less well logical studies is extremely limited. Hence suited for therapeutic use in dyspeptic patients. More recently, it was demonstrated that 5-HT labourious and slow techniques, such as intra- induced relaxations of the guinea pig stomach cellular electrophysiological studies of receptor are mediated via release of nitric oxide through responses, are not suitable for studying the 26 human ENS. Immunohistochemical demon- activation of a 5-HT1-like receptor. Combin- ing 5-HT responsiveness with immunohisto- stration of receptor expression on human chemical studies in myenteric neurones of the myenteric neurones may be one more fruitful approach. Recently, we investigated the use of guinea pig stomach revealed that a 5-HT1P receptor is present on intrinsic nitrergic neu- optical imaging of neuronal calcium concentra- rones (fig 2).27 We recently demonstrated that tion as a technique to study the responsiveness sumatriptan is an agonist at the 5-HT1P receptor of enteric neurones to neuroligands. This tech- on gastric antral myenteric neurones.28 We con- nique, which was validated on cultured my- firmed that administration of sumatriptan can enteric neurones, is also applicable to ex vivo improve impaired gastric accommodation in preparations and on neurones that are retro- dyspeptic patients with early satiety, with a gradely labelled with DiI.29–31 In preliminary resultant improvement in early satiety.21 studies, we demonstrated that circular muscle motor neurones of the guinea pig small The ENS in humans as a target for intestine showed characteristic responsiveness pharmacotherapy to groups of neuroligands. We are currently
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • The Enteric Nervous System: a Second Brain
    The Enteric Nervous System: A Second Brain MICHAEL D. GERSHON Columbia University Once dismissed as a simple collection of relay ganglia, the enteric nervous system is now recognized as a complex, integrative brain in its own right. Although we still are unable to relate complex behaviors such as gut motility and secretion to the activity of individual neurons, work in that area is proceeding briskly--and will lead to rapid advances in the management of functional bowel disease. Dr. Gershon is Professor and Chair, Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York. In addition to numerous scientific publications, he is the author of The Second Brain (Harper Collins, New York, 1998). Structurally and neurochemically, the enteric nervous system (ENS) is a brain unto itself. Within those yards of tubing lies a complex web of microcircuitry driven by more neurotransmitters and neuromodulators than can be found anywhere else in the peripheral nervous system. These allow the ENS to perform many of its tasks in the absence of central nervous system (CNS) control--a unique endowment that has permitted enteric neurobiologists to investigate nerve cell ontogeny and chemical mediation of reflex behavior in a laboratory setting. Recognition of the importance of this work as a basis for developing effective therapies for functional bowel disease, coupled with the recent, unexpected discovery of major enteric defects following the knockout of murine genes not previously known to affect the gut, has produced a groundswell of interest that has attracted some of the best investigators to the field. Add to this that the ENS provides the closest thing we have to a window on the brain, and one begins to understand why the bowel--the second brain--is finally receiving the attention it deserves.
    [Show full text]
  • Pin Faculty Directory
    Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford
    [Show full text]
  • Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Systems/Circuits Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle Nick J Spencer1, Timothy J Hibberd1, Lee Travis1, Lukasz Wiklendt1, Marcello Costa1, Hongzhen Hu2, Simon J Brookes1, David A Wattchow3, Phil G Dinning1,3, Damien J Keating1 and Julian Sorensen4 1College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia 2Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA 3Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia. 4Cyber Sensing and Shaping, Cyber & Electronic Warfare Division, Defence, Science & Technology Group, Edinburgh, South Australia, Australia. DOI: 10.1523/JNEUROSCI.3489-17.2018 Received: 7 December 2017 Revised: 30 April 2018 Accepted: 9 May 2018 Published: 28 May 2018 Author contributions: N.J.S., M.C., and H.H. designed research; N.J.S. wrote the first draft of the paper; N.J.S., S.J.B., D.A.W., P.D., D.J.K., and J.S. edited the paper; N.J.S., T.H., M.C., H.H., and J.S. wrote the paper; T.H. and L.T. performed research; T.H. contributed unpublished reagents/analytic tools; T.H., L.T., L.W., and J.S. analyzed data. Conflict of Interest: The authors declare no competing financial interests. The experiments carried out in this study were funded by grants to NJS (grant # 1067317 & 1127140) from the National Health and Medical Research Council (NH & MRC) of Australia.
    [Show full text]
  • The Autonomic Nervous System and Gastrointestinal Tract Disorders
    NEUROMODULATION THE AUTONOMIC NERVOUS SYSTEM AND GASTROINTESTINALTRACT DISORDERS TERRY L. POWLEY, PH.D. PURDUE UNIVERSITY • MULTIPLE REFRACTORY GI DISORDERS EXIST. • VISCERAL ATLASES OF THE GI TRACT ARE AVAILABLE. • REMEDIATION WITH ELECTROMODULATION MAY BE PRACTICAL. TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 50 INTERNATIONAL I:"' NEUROMODULATION SOCIETY 0 40 ·­IS 12TH WORLD CONGRESS -I: -• 30 !"' A. -..0 20 ..a• E 10 z::::t TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY DISORDERS TO TREAT WITH NEUROMODULATION ACHALASIA DYSPHAGIA GASTROPARESIS GERD GUT DYSMOTILITY MEGA ESOPHAGUS DYSPEPSIA ,, VISCERAL PAIN l1 ' I NAUSEA, EMESIS OBESITY ,, ' 11 I PYLORIC STENOSIS ==..:.= --- "" .:.= --- .. _ _, DUMPING REFLUX COLITIS I:' . - IBS -·-- - CROHN'S DISEASE HIRSCHSPRUNG DISEASE CHAGAS DISUSE Gastrointestinal Tract Awodesk@ Ma;·a@ TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY TIME The Obesity Epidemic in America ·. TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION : THE AUTO N OMIC NERVOUS SYSTEM A N D G A STP.OINTESTINAL TRACT DISORDERS UNI V E R SI TY ROUX-EN-Y BYPASS Bypassed portion of stomach Gastric -"'~­ pouch Bypassed - ­ Jejunum duodenum -1" food -___----_,,.,. digestivejuice TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM A N D GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 8y~s~ portionof i t()(l\3Ch • TERRYl. POWLEY, PH.D. PURDUE NEUROMOOUlATION: THE AUTONOMIC NERVOUS SYSTEM ANO 0.-STP.OINTESTINAL TRACT DISORDERS UHIVlflSITY • DESPERATE PATIENTS • ABSENCE OF SATISFACTORY PHARMACOLOGICAL TREATMENTS • POPULAR MEDIA HYPE • ABSENCE OF A SOLID MECHANISTIC UNDERSTANDING • UNCRITICAL ACCEPTANCE OF PROPONENT'S CLAIMS • MYOPIA REGARDING SIDE EFFECTS TERRY l.
    [Show full text]
  • Heparin-Binding EGF-Like Growth Factor Promotes Neuronal Nitric Oxide Synthase Expression and Protects the Enteric Nervous System After Necrotizing Enterocolitis
    Articles | Translational Investigation nature publishing group Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis Yu Zhou1, Yijie Wang1, Jacob Olson1, Jixin Yang1 and Gail E. Besner1 BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is produced by myenteric neurons. Neuronal nitric oxide associated with alterations of the enteric nervous system synthase (nNOS)-producing neurons and choline acetyl (ENS), with loss of neuronal nitric oxide synthase (nNOS)- transferase (ChAT)-producing neurons are two major intest- expressing neurons in the intestine. The aim of this study was inal neuronal subpopulations involved in the regulation of to investigate the roles of heparin-binding EGF-like growth intestinal motility, and nNOS/ChAT misbalance has been factor (HB-EGF) in neural stem cell (NSC) differentiation, nNOS reported in certain inflammatory intestinal diseases and expression, and effects on ENS integrity during genetic intestinal motility disorders (2,3). We have shown experimental NEC. that neonatal NEC is associated with alterations of the ENS, METHODS: The effects of HB-EGF on NSC differentiation and with significant loss of nNOS-expressing neurons not only in nNOS production were determined using cultured enteric the acute stages of the disease but also months later at the NSCs. Myenteric neuronal subpopulations were examined in time of stoma closure (4). This decreased nNOS expression HB-EGF knockout mice. Rat pups were exposed to experi- may explain the intestinal dysmotility seen in NEC patients mental NEC, and the effects of HB-EGF treatment on nNOS even after recovery from the acute event. Current therapy for production and intestinal neuronal apoptosis were intestinal dysmotility is limited mainly to palliation, and new determined.
    [Show full text]
  • Regional Complexity in Enteric Neuron Wiring Reflects Diversity of Motility
    RESEARCH ARTICLE Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine Zhiling Li1, Marlene M Hao2, Chris Van den Haute3,4, Veerle Baekelandt3, Werend Boesmans1,5,6*, Pieter Vanden Berghe1* 1Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium; 2Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia; 3Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; 4Leuven Viral Vector Core, KU Leuven, Leuven, Belgium; 5Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; 6Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium Abstract The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location *For correspondence: and response fingerprint of large populations of enteric neurons upon focal network
    [Show full text]
  • Development of Enteric Neurons and Muscularis Macrophages Marina Avetisyan Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2019 Development of Enteric Neurons and Muscularis Macrophages Marina Avetisyan Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Avetisyan, Marina, "Development of Enteric Neurons and Muscularis Macrophages" (2019). Arts & Sciences Electronic Theses and Dissertations. 1781. https://openscholarship.wustl.edu/art_sci_etds/1781 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Neurosciences Dissertation Examination Committee: Robert O. Heuckeroth, Chair Aaron DiAntonio, Co-Chair Paul Bridgman Joseph Dougherty Kelly Monk Development of Enteric Neurons and Muscularis Macrophages. by Marina Avetisyan A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2019 St. Louis,
    [Show full text]
  • Building a Second Brain in the Bowel
    Building a second brain in the bowel Marina Avetisyan, … , Ellen Merrick Schill, Robert O. Heuckeroth J Clin Invest. 2015;125(3):899-907. https://doi.org/10.1172/JCI76307. Review Series The enteric nervous system (ENS) is sometimes called the “second brain” because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research. Find the latest version: https://jci.me/76307/pdf The Journal of Clinical Investigation REVIEW SERIES: ENTERIC NERVOUS SYSTEM Series Editor: Rodger Liddle Building a second brain in the bowel Marina Avetisyan,1 Ellen Merrick Schill,1 and Robert O. Heuckeroth2 1Washington University School of Medicine, St. Louis, Missouri, USA. 2Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. The enteric nervous system (ENS) is sometimes called the “second brain” because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death.
    [Show full text]
  • Luminal Nutrients Activate Distinct Patterns in Submucosal and Myenteric Neurons in the Mouse Small Intestine
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427232; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Luminal nutrients activate distinct patterns in submucosal and myenteric neurons in the mouse small intestine C. Fung1, M.M. Hao2, Y. Obata3, J. Tack1, V. Pachnis3, W. Boesmans4,5, P. Vanden Berghe1* 1Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium 2Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia 3The Francis Crick Institute, London, UK 4Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands. 5Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium. *Correspondence: Pieter Vanden Berghe, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427232; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Nutrient signals sensed by enteroendocrine cells are conveyed to the enteric nervous system (ENS) to initiate intestinal reflexes. We addressed whether there are specific enteric pathways dedicated to detecting different luminal nutrients. Calcium imaging was performed on intact jejunal preparations from Wnt1-cre;R26R-GCaMP3 and Villin-cre;R26R-GCaMP3 mice which express a fluorescent calcium indicator in their ENS or intestinal epithelium, respectively. Glucose, acetate, and L-phenylalanine were perfused onto the mucosa whilst imaging underlying enteric neurons.
    [Show full text]
  • The Parasympathetic System
    DR MOUIN ABBOUD PR OF ANATOMY In faculity of medecin ( Damascus and Sham uneversities ) Specialist in respiratory diseases الدكتور معين عبود استاذ التشريح في كلية الطب البشري في جامعة دمشق وجامعة الشام الخاصة اختصاصي في أمراض جهاز التنفس DR MOUIN ABBOUD Abdominal viscera Innervation The Innervation Abdominal viscera are innervated by both : extrinsic ) visceral innervation ( involves : . receiving motor impulses from the central nervous system . and sending sensory information to, the central nervous system; and intrinsic components of the nervous system: involves the regulation of digestive tract activities by a generally self-sufficient network of sensory and motor neurons (the enteric nervous system). Visceral innervation The visceral innervation is transmited by Autonomic Plexuses )prevertebral plexus ). By which : these viscera send sensory information back to the central nervous system through visceral afferent fibers and receive motor impulses from the central nervous system through visceral efferent fibers. prevertebral plexus The abdominal prevertebral plexus receives: preganglionic parasympathetic and visceral afferent fibers from the vagus nerves [X]; preganglionic sympathetic and visceral afferent fibers from the thoracic and lumbar splanchnic nerves; preganglionic parasympathetic fibers from the pelvic splanchnic nerves. The Sympathetic Division The sympathetic division consists of the following: Preganglionic fibers in the lateral grey column of the thoracic and upper two lumbar segments of the spinal cord. Ganglionic neurons in : . Sympathetic chain ganglia, also called paravertebral, or lateral ganglia . Collateral ganglia, also known as prevertebral ganglia . Specialized neurons in the interior of the suprarenal gland Postganglionic fibers : to target organs Sectional Organization of the Spinal Cord The parasympathetic system The parasympathetic system is less neatly defined Preganglionic fibers .
    [Show full text]
  • ANSWERS) Start At
    NAME ________________________________ Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html On the left side, click on “Explore,” then click on “The Neuron,” then click on “Millions and Billions of Cells: Type of Neurons” to answer the following questions: 1. A neuron is a ___NERVE___ cell. The brain is made up of about _100__billion neurons. 2. Neurons are similar to other cells in the body in some ways such as: a. Neurons are surrounded by a ________MEMBRANE_______________________. b. Neurons have a ______NUCLEUS____________ that contains __GENES______. c. Neurons contain cytoplasm, mitochondria and other ___ORGANELLES_________. 3. However, neurons differ from other cells in the body in some ways such as: a. Neurons have specialized projections called ____DENDRITES_____ and ___AXONS_. b. Dendrites bring information to the ___CELL BODY__. c. AXONS_take information away from the cell body. d. Neurons communicate with each other through an ___ELECTROCHEMICAL__process. 4. Neurons form specialized connections called ____SYNAPSES_______ and produce special chemicals called ____NEUROTRANSMITTERS__________ that are released at the synapse. Scroll down to the chart comparing axons and dendrites. Fill in the answers: There are several differences between axons and dendrites: AXONS DENDRITES Take information __AWAY__ the cell body Bring information _TOWARD__ the cell body SMOOTH________ Surface ROUGH______ Surface (dendritic spines) Generally only ____1______ per cell Usually ________MANY______ per cell No ______RIBOSOMES______________ Have ribosomes Can have _______MYELIN____________ No ________MYELIN__________ insulation Branch further from the cell body Branch ____NEAR______ the cell body 1 Take the short neuron quiz at the bottom of the page, and correctly answer these questions: 1. Neuron part that releases neurotransmitters into the synaptic cleft.
    [Show full text]