Building Information Modeling (BIM) Impact on Construction Performance

Total Page:16

File Type:pdf, Size:1020Kb

Building Information Modeling (BIM) Impact on Construction Performance Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2018 Building Information Modeling (BIM) Impact on Construction Performance David D. John Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Architectural Engineering Commons, Civil Engineering Commons, Construction Engineering Commons, and the Construction Engineering and Management Commons Recommended Citation John, D D. (2018). Building Information Modeling (BIM) Impact on Construction Performance. Master’s thesis, Georgia Southern University, Statesboro, Georgia. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN (Under the Direction of Yunfeng (Cindy) Chen) ABSTRACT This study is designed to address the need for having a measure for Construction Performance on BIM-assisted construction projects. Through this study a new Construction Key Performance Indicator (CKPI) matrix is identified and created by the author. The CKPI could be used to assess BIM-assisted projects. Utilizing a sequential mixed methodology approach, academic and practitioner perspectives are assessed. A qualitative content analysis and quantitative descriptive analysis based on demographics are conducted to establish a better understanding of BIM and Construction Performance. The academic perspective is used to assess the relevance of BIMM and CKPI indicators, and the practitioner perspective is used to assess the extent to which BIM addresses the indicators. The key contributions of this study include the creation of the Construction Key Performance Indicator (CKPI) matrix and a preliminary recommendation for the creation of the BIM – Project Success Ratio (BIM-PSR) benchmark. The findings and recommendations of this study could be used by companies to help assess their current BIM adoption and identify if and how BIM should be adopted. The findings also identify existing areas of BIM infrastructure that need improvement for a more positive impact on construction performance. Academics could use the findings and recommendations to better structure courses for students and future research in BIM’s impact on Construction Performance. INDEX WORDS: Building Information Modeling, BIM, Performance, Productivity, Construction, CKPI, BIM-PSR BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN B.S., Georgia Southern University, 2016 A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE STATESBORO, GEORGIA © 2018 DAVID DYLAN JOHN All Rights Reserved 1 BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN Major Professor: Yunfeng (Cindy) Chen Committee: Francisco Cubas Suazo Clinton D. Martin Electronic Version Approved: July 2018 2 DEDICATION To I dedicate this work to my Father (Dharshan John), a champion and role-model who sacrificed so much to ensure that I could pursue my Academic and professional dreams here in the United States of America. My Mother (Winifred John), who prayed each day for the favor of God to go with me and I know looks down upon me from heaven. And lastly, to all students who feel that they may not have within them the ability to persevere and complete a college degree, I dedicate this work to encourage you to stay focused till the end. 3 ACKNOWLEDGMENTS The completion of this thesis was accomplished with the help and support of many people. I would firstly like to thank God for his guidance and divine direction through my entire Academic career. I do not think I could have accomplished anything without my amazing thesis instructor Dr. Yunfeng (Cindy) Chen. Her support, direction and guidance was critical to my progress towards the successful completion of this thesis. I also wish to thank Dr. Marcel Maghiar for introducing me to undergraduate research and encouraging me to develop an interest for graduate study. I am very thankful to the members of my thesis committee, Dr. Francisco Cubas Suazo and Dr. Clinton D. Martin for their constructive and positive feedback. I would like to acknowledge Dr. Patrice Jackson (My dearest Momma Dean) for her motivation and encouragement to balance both my Academic and Student Government work. Her prayers and support were critical to keep me on course and keep me motivated as I traveled towards the completion of my masters’ degree and thesis. I am appreciative to the many construction professionals and Academics who have mentored me along this journey and took their valuable time to add perspective to my study. I also appreciate the support provided by my dear friend and colleague Jyoti Bikash Das in identifying and interpreting certain technical components for my research and study. A big thank you to my Girlfriend Jhena Pennyman, for her patience and support throughout the development of my thesis. Finally, I am very grateful for family and friends who showed kindness and patience with my odd work hours and schedules and still supported me in every way possible. The sacrifice, help and support of my family and friends have been my biggest strength during tough times in life and I cannot thank them enough for helping me cross the finish line with my master’s thesis. 4 TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................................. 3 LIST OF TABLES .......................................................................................................................... 6 LIST OF FIGURES ........................................................................................................................ 8 CHAPTER 1 ................................................................................................................................... 9 INTRODUCTION....................................................................................................................... 9 1.1 Purpose of the Study ............................................................................................................. 9 1.2 Research Questions ............................................................................................................. 10 1.3 Scope of the Study .............................................................................................................. 10 1.4 Significance ......................................................................................................................... 11 1.5 Assumptions ........................................................................................................................ 11 1.6 Limitations .......................................................................................................................... 12 CHAPTER 2 ................................................................................................................................. 13 LITERATURE REVIEW .......................................................................................................... 13 2.1 Building Information Modeling (BIM) ............................................................................... 13 2.2 Performance / Productivity ................................................................................................. 16 2.3 Relationship between BIM and Productivity/ Construction Performance .......................... 20 CHAPTER 3 ................................................................................................................................. 26 METHODOLOGY .................................................................................................................... 26 3.1 Introduction ......................................................................................................................... 26 3.2 Summary of Procedure ........................................................................................................ 27 3.3 Developing a BIMM matrix ................................................................................................ 27 3.4 Developing a Productivity/ Construction Performance matrix ........................................... 30 3.5 Data Collection .................................................................................................................... 34 CHAPTER 4 ................................................................................................................................. 36 DATA ANALYSIS ................................................................................................................... 36 4.1 Analysis of Construction Graphics Course Data ................................................................ 36 4.2 Analysis of Qualitative Interview Data ............................................................................... 37 4.3 Analysis of Quantitative Survey Data: All categories ........................................................ 48 4.4 Analysis of Quantitative Survey Data: Academic Participants ..........................................
Recommended publications
  • Alternative Contracting Methods
    ALTERNATIVE CONTRACTING METHODS • Conventional Design-Bid-Build • Design/Build • Negotiated General Contractor By Jeff Warner, AIA, LEED AP Principal, ALSC Architects CONVENTIONAL DESIGN-BID-BUILD The most traditional method of delivery of a construction PROS project is where the Architect, after selection by the Client, 1. Costs may be lower due to competition. totally completes the design documents which are then 2. Project design is typically complete prior to start of distributed to General Contractors for bidding. Usually, the construction. low bidder is selected to construct the project and enters 3. Owner receives a single lump sum proposal for the entire into a lump sum type contract agreement directly with the project not subject to cost escalation. Owner. During construction, the Architect typically maintains 4. This approach conforms most directly to public bidding a strong administrative role and is the focal point of most laws. communication on the project between the Contractor and Owner. While proponents of this method of contracting feel that CONS the lowest overall initial costs are obtained through pure 1. If bids exceed budget, the project may require re-design. competitive bidding, an adversarial relationship between 2. Difficult to fast-track or pre-order materials, resulting in principal parties can develop; making the administration of later Owner occupancy. changes more difficult, time consuming and costly. Perhaps 3. The General Contractor may be in an adversarial the biggest potential problem with this approach to a major, relationship with the Owner and Architect/Engineer. complex construction project is that the Owner does not 4. Prices for change order work are typically higher and obtain a firm handle on construction costs until the project has more difficult to control.
    [Show full text]
  • Building America Building Science Translator
    Building America Building Science Translator February 2015 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Building America Building Science Translator Prepared for The U.S. Department of Energy’s Building America Program Office of Energy Efficiency and Renewable Energy Prepared by Sam Rashkin, U.S. Department of Energy Building Technologies Office Lindsay Parker, Energetics, Inc. February 2015 i BUILDING AMERICA BUILDING SCIENCE TRANSLATOR Table of Contents List of Tables . ii 1 Background . 1 2 Terminology Strategy . 2. List of Tables Table 1 . High-Performance Thermal Enclosure . .4 . Table 2 . High-Performance HVAC System . 6. Table 3 . Efficient Components . .9 . Table 4 . Indoor Environment System . 11 Table 5 . Water Management . 13 Table 6 . Disaster Resistance . 14 Table 7 . Water Efficiency . 15 Table 8 . Passive Solar Home . 16 Table 9 . Solar Ready Home . .16 .
    [Show full text]
  • Building Information Modelling (BIM)
    Renewable and Sustainable Energy Reviews xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges ⁎ Ali Ghaffarianhoseinia, , John Tookeya, Amirhosein Ghaffarianhoseinib,c, Nicola Naismitha, Salman Azhard, Olia Efimovaa, Kaamran Raahemifarb a Department of Built Environment Engineering, School of Engineering, Computer and Mathematical Sciences, AUT University, Auckland, New Zealand b Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Canada c Faculty of Arts and Social Sciences, University of Malaya (UM), Kuala Lumpur, Malaysia d McWhorter School of Building Science, Auburn University, Auburn, USA ARTICLE INFO ABSTRACT Keywords: Rapid advancement of technology continues to leverage change and innovation in the construction industry. Building Information Modelling (BIM) Continued digitization of the industry offers the opportunity to totally reinvent contemporary construction BIM non-adoption risks design and delivery practice for future development. Building Information Modelling (BIM) within the context Computer-aided design (CAD) of Architecture, Engineering & Construction (AEC) has been developing since the early 2000s and is considered to be a key technology. Despite major technical advancements in BIM, it has not been fully adopted and its definitive benefits have not been fully capitalized upon by industry stakeholders. The lack of widespread uptake of BIM appears to be linked to the risks and challenges that are potentially impeding its effectiveness. This paper aims to discuss the reality of BIM, its widespread benefits and current level of uptake. The risks and challenges associated with the adoption of BIM, as well as recommendations regarding how future BIM adoption could be developed are also highlighted.
    [Show full text]
  • Building Science 2006
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 3 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 4 Arrhenius Equation Building Science Corporation Joseph Lstiburek 5 For Every 10 Degree K Rise Activation Energy Doubles Building Science Corporation Joseph Lstiburek 6 Damage Functions Water Heat Ultra-violet Radiation Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 10 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 11 Building Science Corporation Joseph Lstiburek 12 Building Science Corporation
    [Show full text]
  • Building Information Modeling (BIM) Standard & Guide
    Building Information Modeling (BIM) Standard & Guide Version 1 – December 2014 No portion of this work may be reproduced without the express written permission of the copyright holders. All rights reserved by Florida International University. ` FIU BIM Specification ‐ Final 120814 Table of Contents INTRODUCTION ............................................................................................................................................. 4 Intent: ........................................................................................................................................................ 4 BIM Goals: ................................................................................................................................................. 4 BIM Uses: .................................................................................................................................................. 5 Capital planning support: ...................................................................................................................... 6 Pre‐Design and Programming ............................................................................................................... 6 Site Conditions ‐ Existing Conditions and New Construction ............................................................... 6 Architectural Model ‐ Spatial and Material Design Models .................................................................. 7 Space and Program Validation .............................................................................................................
    [Show full text]
  • Bavarian Castles and All the Know- How and the Tools You Need for That
    Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Bavarian Castles and all the know- how and the tools you need for that Hartwig M. Künzel and Florian Antretter (Fraunhofer Institute for Building Physics) Kunzel/Antretter 1 of 263 Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Moisture control design by hygrothermal simulation Hartwig M. Künzel (Fraunhofer Institute for Building Physics) Kunzel/Antretter 2 of 263 MoistureNineteenth Annual Building Sciencecontrol Symposium design by hygrothermal simulation August 4, 2015 Contents Introduction Moisture problems Moisture loads Standards and guidelines Hygrothermal simulation Conclusions 11 Kunzel/Antretter 3 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 IBP field test site in Holzkirchen 60 years of field tests = long-term durability observation 1953 1976 2001 12 Kunzel/Antretter 4 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Measure- ments help to validate calculations 13 Kunzel/Antretter 5 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Green roof investigation Water retention is good for the environment but not always for the building 14 Kunzel/Antretter 6 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 VERU test building to determine energy consumption required to meet comfort conditions 15 Kunzel/Antretter 7 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Degradation Moisture is the main cause for damage and degradation 16 Kunzel/Antretter 8 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Damage NMR-Scanner Hygrothermal Ice crystals Simulation Damage most likely at max.
    [Show full text]
  • John Christopher Simon, PE
    John Christopher Simon, P.E. Thomas Downey, Ltd. 301 North Fairfax Street, Suite 108, Alexandria, VA 22314 EDUCATION B.S. Engineering Virginia Polytechnic Institute and State University, 1979 Masters Degree Program Participant, Civil Engineering St. Louis University, 1980 PROFESSIONAL BACKGROUND AND EXPERIENCE THOMAS DOWNEY, LTD. Alexandria, VA Vice President 2011 – Present Consulting engineer for building structures, exterior wall systems, windows, masonry, concrete repairs, waterproofing, roofing, historic structures, and construction. Technical oversight for repair and restoration work. Failure investigation, forensic investigation and consultation for litigation work. Capital budget studies for community associations and commercial properties. CONCRETE PROTECTION & RESTORATION, INC. Baltimore, MD Division Manager 2010 – 2011 Oversight and management of the General Repair Division for a major concrete repair and waterproofing specialty contractor. ARCHSTONE COMMUNITIES New York, NY Senior Project Manager 2007 – 2010 Full project oversight for major remediation and renovation of 396 unit multi-family community on Long Island, NY; management of on-site staff, architectural design team and renovation contractors. AMC DELANCEY HC PROPERTIES, LP St. Augustine, FL Vice President / Project Manager 2006 – 2007 Full project oversight for 132 acre $300MM mixed-use residential and commercial community on Anastasia Island, Florida, including selection of design team, oversight of entitlement process, coordination of HOA and condominium documents,
    [Show full text]
  • Design-Build Manual
    DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION DESIGN BUILD MANUAL May 2014 DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION MATTHEW BROWN - ACTING DIRECTOR MUHAMMED KHALID, P.E. – INTERIM CHIEF ENGINEER ACKNOWLEDGEMENTS M. ADIL RIZVI, P.E. RONALDO NICHOLSON, P.E. MUHAMMED KHALID, P.E. RAVINDRA GANVIR, P.E. SANJAY KUMAR, P.E. RICHARD KENNEY, P.E. KEITH FOXX, P.E. E.J. SIMIE, P.E. WASI KHAN, P.E. FEDERAL HIGHWAY ADMINISTRATION Design-Build Manual Table of Contents 1.0 Overview ...................................................................................................................... 1 1.1. Introduction .................................................................................................................................. 1 1.2. Authority and Applicability ........................................................................................................... 1 1.3. Future Changes and Revisions ...................................................................................................... 1 2.0 Project Delivery Methods .............................................................................................. 2 2.1. Design Bid Build ............................................................................................................................ 2 2.2. Design‐Build .................................................................................................................................. 3 2.3. Design‐Build Operate Maintain....................................................................................................
    [Show full text]
  • An Overview of the Building Delivery Process
    An Overview of the Building Delivery CHAPTER Process 1 (How Buildings Come into Being) CHAPTER OUTLINE 1.1 PROJECT DELIVERY PHASES 1.11 CONSTRUCTION PHASE: CONTRACT ADMINISTRATION 1.2 PREDESIGN PHASE 1.12 POSTCONSTRUCTION PHASE: 1.3 DESIGN PHASE PROJECT CLOSEOUT 1.4 THREE SEQUENTIAL STAGES IN DESIGN PHASE 1.13 PROJECT DELIVERY METHOD: DESIGN- BID-BUILD METHOD 1.5 CSI MASTERFORMAT AND SPECIFICATIONS 1.14 PROJECT DELIVERY METHOD: 1.6 THE CONSTRUCTION TEAM DESIGN-­NEGOTIATE-BUILD METHOD 1.7 PRECONSTRUCTION PHASE: THE BIDDING 1.15 PROJECT DELIVERY METHOD: CONSTRUCTION DOCUMENTS MANAGEMENT-RELATED METHODS 1.8 PRECONSTRUCTION PHASE: THE SURETY BONDS 1.16 PROJECT DELIVERY METHOD: DESIGN-BUILD METHOD 1.9 PRECONSTRUCTION PHASE: SELECTING THE GENERAL CONTRACTOR AND PROJECT 1.17 INTEGRATED PROJECT DELIVERY METHOD DELIVERY 1.18 FAST-TRACK PROJECT SCHEDULING 1.10 CONSTRUCTION PHASE: SUBMITTALS AND CONSTRUCTION PROGRESS DOCUMENTATION Building construction is a complex, significant, and rewarding process. It begins with an idea and culminates in a structure that may serve its occupants for several decades, even centuries. Like the manufacturing of products, building construction requires an ordered and planned assembly of materials. It is, however, far more complicated than product manufacturing. Buildings are assembled outdoors by a large number of diverse constructors and artisans on all types of sites and are subject to all kinds of weather conditions. Additionally, even a modest-sized building must satisfy many performance criteria and legal constraints, requires an immense variety of materials, and involves a large network of design and production firms. Building construction is further complicated by the fact that no two buildings are identical; each one must be custom built to serve a unique function and respond to its specific context and the preferences of its owner, user, and occupant.
    [Show full text]
  • Licensing Board for General Contractors Subchapter
    CHAPTER 12 - GENERAL CONTRACTORS CHAPTER 12 – LICENSING BOARD FOR GENERAL CONTRACTORS SUBCHAPTER 12A – GENERAL PROVISIONS SECTION .0100 - ORGANIZATION AND RESPONSIBILITIES OF BOARD 21 NCAC 12A .0101 IDENTIFICATION The State Licensing Board for General Contractors, hereinafter referred to as the "North Carolina Licensing Board for General Contractors" or "the Board," is located in Raleigh, North Carolina; its mailing address is 5400 Creedmoor Road, Raleigh, North Carolina 27612. The Board website is www.nclbgc.org. History Note: Authority G.S. 87-2; Eff. February 1, 1976; Amended Eff. June 23, 1977; Readopted Eff. September 26, 1977; Amended Eff. December 1, 1985; January 1, 1983; Pursuant to G.S. 150B-21.3A, rule is necessary without substantive public interest Eff. July 23, 2016; Amended Eff. April 1, 2018; Recodified from 21 NCAC 12 .0101 Eff. January 2, 2020. 21 NCAC 12A .0102 GENERAL PURPOSE OF BOARD (a) The purpose of the Board is to regulate persons who engage in activities which constitute the practice of general contracting as defined in G.S. 87-1 in order to safeguard the life, health and property of the people of North Carolina as well as promote the public welfare. (b) The Board regulates the practice of general contracting by: (1) determining the qualifications of persons seeking to enter the practice of general contracting and granting to those persons who have met the statutory requirements the privilege of entering the practice of general contracting; (2) enforcing the provisions of the North Carolina General Statutes pertaining to general contractors; and (3) enforcing the Board's Rules, which are designed to ensure a high degree of competence in the practice of general contracting.
    [Show full text]
  • Architects (And General Contractors)…
    VOLUME FIVE ISSUE FOUR - SUMMER 2012 Architects (and General Contractors)….. If They Only Knew By: Billy Procida Procida Funding & Advisors www.procida.com It is still amazing to me after 32 the pie and is the first to get foundation of which was years in this business that you blamed if something goes architects playing contractor need a license for virtually wrong; which is why I quickly and developer. During the last everything in this business turned to real estate 32 years, I have been except to be a developer. As a development by age 19 all while surrounded by architects on a financier I have met hundreds honing my construction skills. daily basis and have been of people who call themselves blessed to work side by side developers, they come from all It is worth noting that my older with the likes of Michael Graves walks of life, former lawyers, brother went to college for and Bernardo Fort Brescia to bond traders and my favorite engineering and architecture, the other end of the spectrum the doctors and dentists. While and went on to earn his masters of solo practitioners that while I've never kept data on the in architecture. In 1980, there unknown are very talented. subject it’s safe to say that less were no schools teaching real Recently, we have been working than 5 % of the people I've met estate development so I went with Gaetano Development, that call themselves a developer right out of high school into the Steve Gaetano AIA, architect have any architectural or real world.
    [Show full text]
  • Asheville AIA.Pdf
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science presented by www.buildingscience.com There Is No Such Thing As A Free Thermodynamic Lunch Building Science Corporation Joseph Lstiburek 2 What is a Building? Building Science Corporation Joseph Lstiburek 3 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 4 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 5 Thermodynamics Building Science Corporation Joseph Lstiburek 6 Zeroth Law – A=B and B=C therefore A=C First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 10 ,'-."-%/*01-$%1$*23(43(5&-3% 63)$47*8)&-9'($:**VV Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 12 Hygrothermal Analysis Building Science Corporation Joseph Lstiburek 13 Building Science Corporation Joseph Lstiburek 14 Firmness, Commodity and Delight “These are properly designed, when due regard is had to the country and climate in which they are erected.
    [Show full text]