Building America Building Science Translator

Total Page:16

File Type:pdf, Size:1020Kb

Building America Building Science Translator Building America Building Science Translator February 2015 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Building America Building Science Translator Prepared for The U.S. Department of Energy’s Building America Program Office of Energy Efficiency and Renewable Energy Prepared by Sam Rashkin, U.S. Department of Energy Building Technologies Office Lindsay Parker, Energetics, Inc. February 2015 i BUILDING AMERICA BUILDING SCIENCE TRANSLATOR Table of Contents List of Tables . ii 1 Background . 1 2 Terminology Strategy . 2. List of Tables Table 1 . High-Performance Thermal Enclosure . .4 . Table 2 . High-Performance HVAC System . 6. Table 3 . Efficient Components . .9 . Table 4 . Indoor Environment System . 11 Table 5 . Water Management . 13 Table 6 . Disaster Resistance . 14 Table 7 . Water Efficiency . 15 Table 8 . Passive Solar Home . 16 Table 9 . Solar Ready Home . .16 . Table 10 . Whole-House Solutions . 16 Table 11 . Home Commissioning (HC) . 17 ii 1 Background Housing industry leaders today are successfully building and selling high-performance new and existing homes. This includes DOE Zero Energy Ready Home (formerly DOE Challenge Home), ENERGY STAR Certified Homes, numerous green building programs, and performance-focused remodeling projects through Home Performance with ENERGY STAR. However, many stakeholders are frustrated that the transaction process fails to recognize the value associated with lower cost of ownership, greater comfort, improved health, ensured combus- tion safety, and more durability. While there are a myriad of activities educating key transaction players, Building America and DOE Zero Energy Ready Home believe that we need to more effectively communicate the value of high-performance homes. This begins by using terminology for high-performance measures that consistently convey the improved consumer experience, rather than the engineering function. This is an important and power- ful first step which is fully under our control, particularly if we facilitate a collective impact process engaging all stakeholders to develop and embrace this new language of ‘value’. The goal of this Building Science Translator is to begin this process by providing a new glossary of ‘Power Words’ that can be used across the industry to consistently reinforce the value of high-performance homes. This includes applying this new language consistently to all consumer-facing materials used by government programs and industry alike. 1 BUILDING AMERICA BUILDING SCIENCE TRANSLATOR 2 Terminology Strategy Glossary Goals: • Consistency of Language – terminology is used consistently throughout glossary • Effectiveness of Language – terminology addresses consumer experience vs. technical function • Inclusiveness of Language – terminology addresses all critical high-performance home measures High-Performance Definition: The combination of Energy Efficiency above code, standard, or business-as-usual, ensured Quality Installation, and product Performance that meets or exceeds consumer expectations: High-Performance = Energy Efficiency + Quality Installation + Performance Promote consistent terminology for quality in related industries (e.g., coordinate with RESNET, BPI, ACCA, etc.): Energy Efficiency: • High-Efficiency = minimum 15% above existing code, standard, or business-as-usual • Ultra-Efficient = minimum 50% above existing code, standard, or business as usual • If not calibrated, just use ‘Energy Saving _____’ (e.g., if talking about SIP technology in general, just use ‘Energy Saving SIP Construction’. Examples: • ‘High-Efficiency’ Insulation = minimum 2012 IECC for most of U.S which is ~15% more efficient than 2009 IECC. • Ultra-Efficient Insulation = 50% minimum above 2009 IECC • ‘High-Efficiency’ Window = ENERGY STAR Window minimum which is ~15% above standard window or ~R-3 • Ultra-Efficient Window = R-5 Window or better • High-Efficient Appliance = ENERGY STAR Qualified Appliance where labeled or equivalent • Ultra-Efficient Appliance = ENERGY STAR Most Efficient where labeled or equivalent Quality Installation: Installation practices that meet or exceed manufacturer specifications and industry standards Quality Installation Terminology = Professionally installed 2 HVAC Systems and Components: • HVAC System = Comfort System • HVAC Equipment = Comfort Equipment • HVAC Ducts = Comfort Delivery System [analogy: lungs of home] • HVAC terminals = Comfort Outlets • HVAC pressure balancing = Comfort Balancing • HVAC transfer grill or jump duct = Comfort Vent • HVAC thermostat = Comfort Control Zero Energy Ready Home Definition: A high-performance home so energy efficient, all or most annual energy consumption can be offset with renewable energy. Alternate Options: Terminology will typically have alternate options that address different performance attributes. This will allow the same measure to be listed multiple times in marketing material for optimum linkage to all improved consumer experiences. Alternate Options Example: High Performance Window System • Comfort – Enhanced Comfort Window System • Efficiency – High Efficiency (e.g., R-3) or Ultra-Efficient (e.g., R-5)Window System • Healthful – Quiet Window System • Advanced Technology – Advanced Window System Technology • Quality – Professionally Installed Window System • Durability – Enhanced Durability Window System 3 BUILDING AMERICA BUILDING SCIENCE TRANSLATOR Table 1. High-Performance Thermal Enclosure Building America Building Science Translator – Page 1a Alternate Terms Building New Building Lives Better Works Better Lasts Better Science Science Engineered Healthful Advanced Enhanced Measure Terminology Ultra-Efficient Quality Built Comfort Environment Technology Durability Professionally- High-Performance High-Performance Enhanced Comfort Moisture Managed High-Efficiency Advanced Enclosure Low-Maintenance Installed Thermal Thermal Enclosure Thermal Enclosure Enclosure Enclosure Enclosure Technology Enclosure Enclosure High-Efficiency or Professionally- High-Performance High-Performance Enhanced Comfort Quiet Window Advanced Window Enhanced Durability Ultra-Efficient Installed Window Window System Window System Window System System System Technology Window System Window System System High-Efficiency or High-Efficiency Enhanced Comfort Advanced Window Sun Protection High-R Window Quiet Window Ultra-Efficient Window Window Technology Window Window Sealed and Flashed Professionally- Draft-Free Window Moisture Managed Energy Saving Advanced Window Professionally- Weather-Protected Window Installed Window Installation Window Installation Window Installation Installation Installed Window Window Installation High-Efficiency or Professionally- High-Performance High-Performance Enhanced Comfort Enhanced Quiet Advanced Insulation Next-Gen Insulation Ultra-Efficient Installed Insulation Insulation System Insulation System Insulation System Insulation System System System Insulation System System High-Efficiency or High-Efficiency or Enhanced Comfort Enhanced Quiet Advanced Insulation High-R Insulation Ultra-Efficient Ultra-Efficient Insulation Insulation Technology Insulation Insulation High-Efficiency or High-Efficiency or High-R Wall Enhanced Comfort Enhanced Quiet Advanced Wall Ultra-Efficient Wall Ultra-Efficient Wall Insulation Wall Insulation Wall Insulation Insulation Insulation Insulation High-Efficiency or High-Efficiency or High-R Floor Enhanced Comfort Enhanced Quiet Advanced Floor Ultra-Efficient Floor Ultra-Efficient Floor Insulation Floor Insulation Floor Insulation Insulation Insulation Insulation High-Efficiency or High-Efficiency or High-R Attic Enhanced Comfort Enhanced Quiet Advanced Attic Ultra-Efficient Attic Ultra-Efficient Attic Insulation Attic Insulation Ceiling Insulation Insulation Insulation Insulation High-Efficiency or High-Efficiency or Enhanced Comfort Enhanced Quiet Advanced High-R Foundation Ultra-Efficient Ultra-Efficient Foundation Foundation Foundation Insulation Foundation Foundation Insulation Insulation Insulation Insulation Insulation Enhanced Comfort Enhanced Quiet Energy Saving Moisture Control Insulation Quality Premium-Installed Advanced Insulation Professionally- Insulation Insulation Insulation Insulation Installation Insulation Installation Practices Installed Insulation Installation Installation Installation Installation Professionally- Fully Aligned Air Whole-House Draft Whole-House Draft Air Contaminant Energy Saving Air Advanced Air Barrier Moisture Control Air Installed Draft Barriers Barrier Barrier Barrier Barrier Technology Barrier Barrier 5 4 Table 1. High-Performance Thermal Enclosure (cont.) Building America Building Science Translator Alternate Terms Building New
Recommended publications
  • Building Information Modelling (BIM)
    Renewable and Sustainable Energy Reviews xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges ⁎ Ali Ghaffarianhoseinia, , John Tookeya, Amirhosein Ghaffarianhoseinib,c, Nicola Naismitha, Salman Azhard, Olia Efimovaa, Kaamran Raahemifarb a Department of Built Environment Engineering, School of Engineering, Computer and Mathematical Sciences, AUT University, Auckland, New Zealand b Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Canada c Faculty of Arts and Social Sciences, University of Malaya (UM), Kuala Lumpur, Malaysia d McWhorter School of Building Science, Auburn University, Auburn, USA ARTICLE INFO ABSTRACT Keywords: Rapid advancement of technology continues to leverage change and innovation in the construction industry. Building Information Modelling (BIM) Continued digitization of the industry offers the opportunity to totally reinvent contemporary construction BIM non-adoption risks design and delivery practice for future development. Building Information Modelling (BIM) within the context Computer-aided design (CAD) of Architecture, Engineering & Construction (AEC) has been developing since the early 2000s and is considered to be a key technology. Despite major technical advancements in BIM, it has not been fully adopted and its definitive benefits have not been fully capitalized upon by industry stakeholders. The lack of widespread uptake of BIM appears to be linked to the risks and challenges that are potentially impeding its effectiveness. This paper aims to discuss the reality of BIM, its widespread benefits and current level of uptake. The risks and challenges associated with the adoption of BIM, as well as recommendations regarding how future BIM adoption could be developed are also highlighted.
    [Show full text]
  • Building Science 2006
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 3 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 4 Arrhenius Equation Building Science Corporation Joseph Lstiburek 5 For Every 10 Degree K Rise Activation Energy Doubles Building Science Corporation Joseph Lstiburek 6 Damage Functions Water Heat Ultra-violet Radiation Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 10 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 11 Building Science Corporation Joseph Lstiburek 12 Building Science Corporation
    [Show full text]
  • Bavarian Castles and All the Know- How and the Tools You Need for That
    Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Bavarian Castles and all the know- how and the tools you need for that Hartwig M. Künzel and Florian Antretter (Fraunhofer Institute for Building Physics) Kunzel/Antretter 1 of 263 Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Moisture control design by hygrothermal simulation Hartwig M. Künzel (Fraunhofer Institute for Building Physics) Kunzel/Antretter 2 of 263 MoistureNineteenth Annual Building Sciencecontrol Symposium design by hygrothermal simulation August 4, 2015 Contents Introduction Moisture problems Moisture loads Standards and guidelines Hygrothermal simulation Conclusions 11 Kunzel/Antretter 3 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 IBP field test site in Holzkirchen 60 years of field tests = long-term durability observation 1953 1976 2001 12 Kunzel/Antretter 4 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Measure- ments help to validate calculations 13 Kunzel/Antretter 5 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Green roof investigation Water retention is good for the environment but not always for the building 14 Kunzel/Antretter 6 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 VERU test building to determine energy consumption required to meet comfort conditions 15 Kunzel/Antretter 7 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Degradation Moisture is the main cause for damage and degradation 16 Kunzel/Antretter 8 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Damage NMR-Scanner Hygrothermal Ice crystals Simulation Damage most likely at max.
    [Show full text]
  • Building Information Modeling (BIM) Impact on Construction Performance
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2018 Building Information Modeling (BIM) Impact on Construction Performance David D. John Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Architectural Engineering Commons, Civil Engineering Commons, Construction Engineering Commons, and the Construction Engineering and Management Commons Recommended Citation John, D D. (2018). Building Information Modeling (BIM) Impact on Construction Performance. Master’s thesis, Georgia Southern University, Statesboro, Georgia. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN (Under the Direction of Yunfeng (Cindy) Chen) ABSTRACT This study is designed to address the need for having a measure for Construction Performance on BIM-assisted construction projects. Through this study a new Construction Key Performance Indicator (CKPI) matrix is identified and created by the author. The CKPI could be used to assess BIM-assisted projects. Utilizing a sequential mixed methodology approach, academic and practitioner perspectives are assessed. A qualitative content analysis and quantitative descriptive analysis based on demographics are conducted to establish a better understanding of BIM and Construction Performance. The academic perspective is used to assess the relevance of BIMM and CKPI indicators, and the practitioner perspective is used to assess the extent to which BIM addresses the indicators.
    [Show full text]
  • Asheville AIA.Pdf
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science presented by www.buildingscience.com There Is No Such Thing As A Free Thermodynamic Lunch Building Science Corporation Joseph Lstiburek 2 What is a Building? Building Science Corporation Joseph Lstiburek 3 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 4 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 5 Thermodynamics Building Science Corporation Joseph Lstiburek 6 Zeroth Law – A=B and B=C therefore A=C First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 10 ,'-."-%/*01-$%1$*23(43(5&-3% 63)$47*8)&-9'($:**VV Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 12 Hygrothermal Analysis Building Science Corporation Joseph Lstiburek 13 Building Science Corporation Joseph Lstiburek 14 Firmness, Commodity and Delight “These are properly designed, when due regard is had to the country and climate in which they are erected.
    [Show full text]
  • Building Science and Radiofrequency Radiation What Makes Smart And
    Building and Environment 176 (2020) 106324 Contents lists available at ScienceDirect Building and Environment journal homepage: www.elsevier.com/locate/buildenv Building science and radiofrequency radiation: What makes smart and T healthy buildings ∗ Frank M. Clegga, , Margaret Searsb, Margaret Friesenc, Theodora Scaratod, Rob Metzingere, Cindy Russellf, Alex Stadtnerg, Anthony B. Millerh a Canadians for Safe Technology; Business Advisory Board, Environmental Health Trust; Canadians for Safe Technology, PO Box 33, Maple Grove Village Postal Outlet, Oakville, ON L6J 7P5, Canada b Ottawa Hospital Research Institute; Prevent Cancer Now; RR 1, 107 Mast Lane, Dunrobin, ON K0A 1T0, Canada c Canadians for Safe Technology; Environmental Health Association of Manitoba, 43 Rutgers Bay, Winnipeg, MB R3T 3C9, Canada d Environmental Health Trust, PO Box 58, Teton Village, WY, 83025, USA e Safe Living Technologies Inc, 7 Clair Road West, PO Box 27051, Guelph, ON N1L 0A6, Canada f Physicians for Safe Technology, PO Box 7443, Menlo Park, CA, 94026, USA g President of Healthy Building Science Inc, 369-B 3rd Street #521, San Rafael, CA, 94901, USA h Former Advisor to the World Health Organization; Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, ON M5T 3M7, Canada ARTICLE INFO ABSTRACT Keywords: Radiofrequency radiation (RFR), used for wireless communications and “smart” building technologies, including Radiofrequency radiation the “Internet of Things,” is increasing rapidly. As both RFR exposures and scientific evidence of harmful effects Microwave radiation increase apace, it is timely to heed calls to include low RFR levels as a performance indicator for the health, Environmental health safety and well-being of occupants and the environment.
    [Show full text]
  • Building Science
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science The “Enclosure” www.buildingscience.com • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation Joseph Lstiburek 6 Building Science Corporation Joseph Lstiburek 7 Building Science Corporation Joseph Lstiburek 8 Building Science Corporation Joseph Lstiburek 9 Building Science Corporation Joseph Lstiburek 10 Building Science Corporation Joseph Lstiburek 11 Building Science Corporation Joseph Lstiburek 12 Building Science Corporation Joseph Lstiburek 13 Building Science Corporation Joseph Lstiburek 15 Building Science Corporation Joseph Lstiburek 16 Building Science Corporation Joseph Lstiburek 17 Building Science Corporation Joseph Lstiburek 18 Building Science Corporation Joseph Lstiburek 19 Building Science Corporation Joseph Lstiburek 20 Building Science Corporation Joseph Lstiburek 21 Building Science Corporation Joseph Lstiburek 22 Building Science Corporation Joseph Lstiburek
    [Show full text]
  • University of Wisconsin Madison.Pdf
    Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science presented by www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 3 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 4 Thermodynamics Building Science Corporation Joseph Lstiburek 5 Zeroth Law – A=B and B=C therefore A=C First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero Building Science Corporation Joseph Lstiburek 6 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 7 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 8 There Is No Such Thing As A Free Thermodynamic Lunch Building Science Corporation Joseph Lstiburek 9 Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 10 Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less
    [Show full text]
  • Understanding Ventilation in Hot Humid Climates 2006-10-26 by Joseph Lstiburek
    building science.com © 2006 Building Science Press All rights of reproduction in any form reserved. Building Science Digest 107 Understanding Ventilation in Hot Humid Climates 2006-10-26 by Joseph Lstiburek Abstract: Adding outdoor air in hot humid climates causes moisture problems right? Sometimes. It depends on the condition of the house before you start to add outdoor air. Contrary to popular belief, most houses in hot, humid climates are over ventilated due to duct leakage and induced air change from internal air pressure effects due to unbalanced air flow and door closure. In most houses when HVAC systems are operating, air change rates of between 0.5 and 1.0 ach are common. Between 150 cfm and 200 cfm of outdoor air is typically introduced in this manner when systems are operating. When HVAC systems are not operating, air change rates of between 0.1 ach and 0.2 ach are common due to stack forces and wind. ASHRAE Standard 62.2 recommends adding approximately 40 to 50 cfm of outdoor air. If duct leakage and pressure effects are addressed, no additional latent load is added during full load periods. The uncontrolled air change is dropped to near zero and controlled air change is added in its place. The resultant latent load is typically similar or lower than standard practice – again under full load. However, if outdoor air is added to a standard house with duct leakage and internal pressure effects, moisture problems are almost assured - duct leakage and internal air pressure effects must be addressed. Even if duct leakage and internal pressure effects are addressed, the latent loads introduced by ventilation air during part load periods are significant and must be addressed.
    [Show full text]
  • (BIM) for Existing Buildings – Literature Review and Future Needs Abstract 1
    Building Information Modeling (BIM) for existing buildings – literature review and future needs Authors: Rebekka VOLKa,b, Julian STENGELa, Frank SCHULTMANNa a Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), Hertzstraße 16, 76131 Karlsruhe, Germany, [email protected], [email protected], [email protected] b corresponding author (+49 721 608 44699) Please cite the article as: Volk, R.; Stengel, J.; Schultmann, F. (2014): Building Information Models (BIM) for existing buildings – literature review and future needs - Automation in Construction 38, pp.109-127, DOI: 10.1016/j.autcon.2013.10.023. Abstract While BIM processes are established for new buildings, the majority of existing buildings is not maintained, refurbished or deconstructed with BIM yet. Promising benefits of efficient resource management motivate research to overcome uncertainties of building condition and deficient documentation prevalent in existing buildings. Due to rapid developments in BIM research, involved stakeholders demand a state-of-the-art overview of BIM implementation and research in existing buildings. This paper presents a review of over recent 180 publications on the topic. Results show scare BIM implementation in existing buildings yet, due to challenges of (1) high modeling/conversion effort from captured building data into semantic BIM objects, (2) updating of information in BIM and (3) handling of uncertain data, objects and relations in BIM occurring in existing buildings. Despite fast developments and spreading
    [Show full text]
  • Experimental Verification of a Standard Test Procedure for Solar Collectors
    9 AlllDD TTbEn NATL INST OF STANDARDS & TECH R.I.C. A1 11 0099621 Hill, James Edward/Experimental verlfica TA435 .U58 V117;1979 C.I NBS-PUB-C 1979 i|35 .U58 NO. 117 1979 C.2 NBS BUILDING SCIENCE SERIES 117 Experimental Verification of a Standard Test Procedure for Solar Collectors U.S. DEPARTMENT OF COMMERCE • NATIONAL BUREAU OF STANDARDS * »• rrrTTJT.T. TT tttt 1 m~ v I NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services.
    [Show full text]
  • Building Science Thermal Imaging
    Building Science and Thermal Imaging ©2009 InterNACHI. All Rights Reserved. 1 Building Science for the Home Inspector For more training courses: http://www.nachi.org/advancededucation.htm http://www.nachi.tv HVAC Training: http://www.nachi.org/hvacclass2008.htm Mold Training: http://www.nachi.org/videomoldcourse.htm All video. All online. Learn from anywhere. Anytime. ©2009 InterNACHI. All Rights Reserved. 2 Building Science for the Home Inspector What is Building Science? Building science is the collection of scientific knowledge that focuses on the analysis and control of the physical phenomena affecting buildings. This includes the detailed analysis of building materials and building envelope systems. This study includes materials science, thermodynamics, hydrodynamics, fluidics, architecture, engineering and construction sciences. ©2009 InterNACHI. All Rights Reserved. 3 Building Science for the Home Inspector Building Science is the study of structure construction, safety, maintenance and, most recently, energy efficiency. It examines buildings by breaking down the house into systems, components and items. Chimneys Structure Insulation Electrical Ventilation Plumbing Roofing Interior Drainage Heating Windows Air conditioning Exterior Foundation Doors ©2009 InterNACHI. All Rights Reserved. 4 Building Science Building Science, specifically, studies the three major factors that affect the building: • Heat • Resistance to heat effects on the building • Temperature control and management inside • Air • Effects of air and wind on the exterior • Air flow and ventilation of the interior • Moisture • Exterior resistance to water and moisture • Control of interior environment (humidity, organic growth ©2009 InterNACHI. All Rights Reserved. 5 Building Science Since ancient times, man has • Wind tried to make living easier and • Heat to protect himself • Cold from adverse • Water environments.
    [Show full text]