Experimental Verification of a Standard Test Procedure for Solar Collectors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Building America Building Science Translator
Building America Building Science Translator February 2015 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Building America Building Science Translator Prepared for The U.S. Department of Energy’s Building America Program Office of Energy Efficiency and Renewable Energy Prepared by Sam Rashkin, U.S. Department of Energy Building Technologies Office Lindsay Parker, Energetics, Inc. February 2015 i BUILDING AMERICA BUILDING SCIENCE TRANSLATOR Table of Contents List of Tables . ii 1 Background . 1 2 Terminology Strategy . 2. List of Tables Table 1 . High-Performance Thermal Enclosure . .4 . Table 2 . High-Performance HVAC System . 6. Table 3 . Efficient Components . .9 . Table 4 . Indoor Environment System . 11 Table 5 . Water Management . 13 Table 6 . Disaster Resistance . 14 Table 7 . Water Efficiency . 15 Table 8 . Passive Solar Home . 16 Table 9 . Solar Ready Home . .16 . -
Building Information Modelling (BIM)
Renewable and Sustainable Energy Reviews xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges ⁎ Ali Ghaffarianhoseinia, , John Tookeya, Amirhosein Ghaffarianhoseinib,c, Nicola Naismitha, Salman Azhard, Olia Efimovaa, Kaamran Raahemifarb a Department of Built Environment Engineering, School of Engineering, Computer and Mathematical Sciences, AUT University, Auckland, New Zealand b Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Canada c Faculty of Arts and Social Sciences, University of Malaya (UM), Kuala Lumpur, Malaysia d McWhorter School of Building Science, Auburn University, Auburn, USA ARTICLE INFO ABSTRACT Keywords: Rapid advancement of technology continues to leverage change and innovation in the construction industry. Building Information Modelling (BIM) Continued digitization of the industry offers the opportunity to totally reinvent contemporary construction BIM non-adoption risks design and delivery practice for future development. Building Information Modelling (BIM) within the context Computer-aided design (CAD) of Architecture, Engineering & Construction (AEC) has been developing since the early 2000s and is considered to be a key technology. Despite major technical advancements in BIM, it has not been fully adopted and its definitive benefits have not been fully capitalized upon by industry stakeholders. The lack of widespread uptake of BIM appears to be linked to the risks and challenges that are potentially impeding its effectiveness. This paper aims to discuss the reality of BIM, its widespread benefits and current level of uptake. The risks and challenges associated with the adoption of BIM, as well as recommendations regarding how future BIM adoption could be developed are also highlighted. -
Building Science 2006
Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 3 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 4 Arrhenius Equation Building Science Corporation Joseph Lstiburek 5 For Every 10 Degree K Rise Activation Energy Doubles Building Science Corporation Joseph Lstiburek 6 Damage Functions Water Heat Ultra-violet Radiation Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 10 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 11 Building Science Corporation Joseph Lstiburek 12 Building Science Corporation -
Bavarian Castles and All the Know- How and the Tools You Need for That
Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Bavarian Castles and all the know- how and the tools you need for that Hartwig M. Künzel and Florian Antretter (Fraunhofer Institute for Building Physics) Kunzel/Antretter 1 of 263 Nineteenth Annual Building Science Symposium August 4, 2015 19th Annual Westford Symposium on Building Science Moisture control design by hygrothermal simulation Hartwig M. Künzel (Fraunhofer Institute for Building Physics) Kunzel/Antretter 2 of 263 MoistureNineteenth Annual Building Sciencecontrol Symposium design by hygrothermal simulation August 4, 2015 Contents Introduction Moisture problems Moisture loads Standards and guidelines Hygrothermal simulation Conclusions 11 Kunzel/Antretter 3 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 IBP field test site in Holzkirchen 60 years of field tests = long-term durability observation 1953 1976 2001 12 Kunzel/Antretter 4 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Measure- ments help to validate calculations 13 Kunzel/Antretter 5 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 Green roof investigation Water retention is good for the environment but not always for the building 14 Kunzel/Antretter 6 of 263 IntroductionNineteenth Annual Building Science Symposium August 4, 2015 VERU test building to determine energy consumption required to meet comfort conditions 15 Kunzel/Antretter 7 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Degradation Moisture is the main cause for damage and degradation 16 Kunzel/Antretter 8 of 263 MoistureNineteenth Annual Building Scienceproblems Symposium August 4, 2015 Damage NMR-Scanner Hygrothermal Ice crystals Simulation Damage most likely at max. -
Damage Cases and Environmental Releases from Mines and Mineral Processing Sites
DAMAGE CASES AND ENVIRONMENTAL RELEASES FROM MINES AND MINERAL PROCESSING SITES 1997 U.S. Environmental Protection Agency Office of Solid Waste 401 M Street, SW Washington, DC 20460 Contents Table of Contents INTRODUCTION Discussion and Summary of Environmental Releases and Damages ......................... Page 1 Methodology for Developing Environmental Release Cases ............................... Page 19 ARIZONA ASARCO Silver Bell Mine: "Waste and Process Water Discharges Contaminate Three Washes and Ground Water" ................................................... Page 24 Cyprus Bagdad Mine: "Acidic, Copper-Bearing Solution Seeps to Boulder Creek" ................................ Page 27 Cyprus Twin Buttes Mine: "Tank Leaks Acidic Metal Solution Resulting in Possible Soil and Ground Water Contamination" ...................................... Page 29 Magma Copper Mine: "Broken Pipeline Seam Causes Discharge to Pinal Creek" ................................ Page 31 Magma Copper Mine: "Multiple Discharges of Polluted Effluents Released to Pinto Creek and Its Tributaries" .................................................... Page 33 Magma Copper Mine: "Multiple Overflows Result in Major Fish Kill in Pinto Creek" ............................... Page 36 Magma Copper Mine: "Repeated Release of Tailings to Pinto Creek" .......................................... Page 39 Phelps Dodge Morenci Mine: "Contaminated Storm Water Seeps to Ground Water and Surface Water" ................................................................ Page 43 Phelps Dodge -
Building Information Modeling (BIM) Impact on Construction Performance
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2018 Building Information Modeling (BIM) Impact on Construction Performance David D. John Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Architectural Engineering Commons, Civil Engineering Commons, Construction Engineering Commons, and the Construction Engineering and Management Commons Recommended Citation John, D D. (2018). Building Information Modeling (BIM) Impact on Construction Performance. Master’s thesis, Georgia Southern University, Statesboro, Georgia. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN (Under the Direction of Yunfeng (Cindy) Chen) ABSTRACT This study is designed to address the need for having a measure for Construction Performance on BIM-assisted construction projects. Through this study a new Construction Key Performance Indicator (CKPI) matrix is identified and created by the author. The CKPI could be used to assess BIM-assisted projects. Utilizing a sequential mixed methodology approach, academic and practitioner perspectives are assessed. A qualitative content analysis and quantitative descriptive analysis based on demographics are conducted to establish a better understanding of BIM and Construction Performance. The academic perspective is used to assess the relevance of BIMM and CKPI indicators, and the practitioner perspective is used to assess the extent to which BIM addresses the indicators. -
Asheville AIA.Pdf
Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science presented by www.buildingscience.com There Is No Such Thing As A Free Thermodynamic Lunch Building Science Corporation Joseph Lstiburek 2 What is a Building? Building Science Corporation Joseph Lstiburek 3 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 4 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 5 Thermodynamics Building Science Corporation Joseph Lstiburek 6 Zeroth Law – A=B and B=C therefore A=C First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero Building Science Corporation Joseph Lstiburek 7 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 8 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 9 Thermodynamic Potential Building Science Corporation Joseph Lstiburek 10 ,'-."-%/*01-$%1$*23(43(5&-3% 63)$47*8)&-9'($:**VV Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 12 Hygrothermal Analysis Building Science Corporation Joseph Lstiburek 13 Building Science Corporation Joseph Lstiburek 14 Firmness, Commodity and Delight “These are properly designed, when due regard is had to the country and climate in which they are erected. -
Building Science and Radiofrequency Radiation What Makes Smart And
Building and Environment 176 (2020) 106324 Contents lists available at ScienceDirect Building and Environment journal homepage: www.elsevier.com/locate/buildenv Building science and radiofrequency radiation: What makes smart and T healthy buildings ∗ Frank M. Clegga, , Margaret Searsb, Margaret Friesenc, Theodora Scaratod, Rob Metzingere, Cindy Russellf, Alex Stadtnerg, Anthony B. Millerh a Canadians for Safe Technology; Business Advisory Board, Environmental Health Trust; Canadians for Safe Technology, PO Box 33, Maple Grove Village Postal Outlet, Oakville, ON L6J 7P5, Canada b Ottawa Hospital Research Institute; Prevent Cancer Now; RR 1, 107 Mast Lane, Dunrobin, ON K0A 1T0, Canada c Canadians for Safe Technology; Environmental Health Association of Manitoba, 43 Rutgers Bay, Winnipeg, MB R3T 3C9, Canada d Environmental Health Trust, PO Box 58, Teton Village, WY, 83025, USA e Safe Living Technologies Inc, 7 Clair Road West, PO Box 27051, Guelph, ON N1L 0A6, Canada f Physicians for Safe Technology, PO Box 7443, Menlo Park, CA, 94026, USA g President of Healthy Building Science Inc, 369-B 3rd Street #521, San Rafael, CA, 94901, USA h Former Advisor to the World Health Organization; Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, ON M5T 3M7, Canada ARTICLE INFO ABSTRACT Keywords: Radiofrequency radiation (RFR), used for wireless communications and “smart” building technologies, including Radiofrequency radiation the “Internet of Things,” is increasing rapidly. As both RFR exposures and scientific evidence of harmful effects Microwave radiation increase apace, it is timely to heed calls to include low RFR levels as a performance indicator for the health, Environmental health safety and well-being of occupants and the environment. -
RREAL's Installation Manual for Solar Thermal Panels (Also Known As “Solar Powered Furnace/SPF”)
SPF Installation Manual Rural Renewable Energy Alliance (RREAL) MADE 2330 Dancing Wind Road SW, Suite 2 IN Pine River, MN 56474, USA MN [email protected] 218-587-4753 www.rreal.org All Rights Reserved 2010 Version 1.10 Table of Contents Figures Safety Warning............................................ 2 1. Fastening Mounting Rails to Structure.... 5 Important Concerns................................... 2 2. SPF Penetration Areas.................................. 6 3. Silicone Location on Starter Collar........... 7 Parts Definitions........................................ 3 4. Installation of Starter Collar....................... 7 Bill of Materials.......................................... 4 5. Installation of Thermistor........................... 7 Additional Materials................................... 4 6. Hang SPF on Mounting Rails..................... 8 1) Select Location........................................ 5 7. Silicone Location on AI Stint..................... 8 2) Hang Mounting Rails.............................. 5 8. Insulation and Back Draft Dampers......... 9 3) Make Penetrations................................... 6 9. Wiring Diagram............................................ 10 10. Extrusion Cut Location............................ 13 4) Prepare to Hang Panel............................ 7 11. Portrait Mounting Rails............................ 14 5) Hang First Panel....................................... 8 12. Landscape Mounting Rails........................ 15 6) Hang Additional Panels.......................... 8 13. -
Building Science
Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science The “Enclosure” www.buildingscience.com • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation Joseph Lstiburek 6 Building Science Corporation Joseph Lstiburek 7 Building Science Corporation Joseph Lstiburek 8 Building Science Corporation Joseph Lstiburek 9 Building Science Corporation Joseph Lstiburek 10 Building Science Corporation Joseph Lstiburek 11 Building Science Corporation Joseph Lstiburek 12 Building Science Corporation Joseph Lstiburek 13 Building Science Corporation Joseph Lstiburek 15 Building Science Corporation Joseph Lstiburek 16 Building Science Corporation Joseph Lstiburek 17 Building Science Corporation Joseph Lstiburek 18 Building Science Corporation Joseph Lstiburek 19 Building Science Corporation Joseph Lstiburek 20 Building Science Corporation Joseph Lstiburek 21 Building Science Corporation Joseph Lstiburek 22 Building Science Corporation Joseph Lstiburek -
University of Wisconsin Madison.Pdf
Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science Adventures In Building Science presented by www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an Environmental Separator Building Science Corporation Joseph Lstiburek 3 • Control heat flow • Control airflow • Control water vapor flow • Control rain • Control ground water • Control light and solar radiation • Control noise and vibrations • Control contaminants, environmental hazards and odors • Control insects, rodents and vermin • Control fire • Provide strength and rigidity • Be durable • Be aesthetically pleasing • Be economical Building Science Corporation Joseph Lstiburek 4 Thermodynamics Building Science Corporation Joseph Lstiburek 5 Zeroth Law – A=B and B=C therefore A=C First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero Building Science Corporation Joseph Lstiburek 6 2nd Law of Thermodynamics Building Science Corporation Joseph Lstiburek 7 In an isolated system, a process can occur only if it increases the total entropy of the system Rudolf Clausius Building Science Corporation Joseph Lstiburek 8 There Is No Such Thing As A Free Thermodynamic Lunch Building Science Corporation Joseph Lstiburek 9 Heat Flow Is From Warm To Cold Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less Air Flow Is From A Higher Pressure to a Lower Pressure Gravity Acts Down Building Science Corporation Joseph Lstiburek 10 Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less -
Understanding Ventilation in Hot Humid Climates 2006-10-26 by Joseph Lstiburek
building science.com © 2006 Building Science Press All rights of reproduction in any form reserved. Building Science Digest 107 Understanding Ventilation in Hot Humid Climates 2006-10-26 by Joseph Lstiburek Abstract: Adding outdoor air in hot humid climates causes moisture problems right? Sometimes. It depends on the condition of the house before you start to add outdoor air. Contrary to popular belief, most houses in hot, humid climates are over ventilated due to duct leakage and induced air change from internal air pressure effects due to unbalanced air flow and door closure. In most houses when HVAC systems are operating, air change rates of between 0.5 and 1.0 ach are common. Between 150 cfm and 200 cfm of outdoor air is typically introduced in this manner when systems are operating. When HVAC systems are not operating, air change rates of between 0.1 ach and 0.2 ach are common due to stack forces and wind. ASHRAE Standard 62.2 recommends adding approximately 40 to 50 cfm of outdoor air. If duct leakage and pressure effects are addressed, no additional latent load is added during full load periods. The uncontrolled air change is dropped to near zero and controlled air change is added in its place. The resultant latent load is typically similar or lower than standard practice – again under full load. However, if outdoor air is added to a standard house with duct leakage and internal pressure effects, moisture problems are almost assured - duct leakage and internal air pressure effects must be addressed. Even if duct leakage and internal pressure effects are addressed, the latent loads introduced by ventilation air during part load periods are significant and must be addressed.