Filipendula Rubra)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Plants in Cardiology
Double blind crossover comparison ofDDD and VVIR pacing in complete heart block 193 raised plasma atrial natriuretic peptide concentrations in 27 Pehrsson SK, Hjemdahl P, Nordlander R, Astrom H. A complete atrioventricular block. BMJ 1988;296:94. comparison of sympathoadrenal activity and cardiac 23 Follenius M, Brandenburger G. Increase in atrial natriuretic performance at rest and during exercise in patients with peptide in response to physical exercise. Eur J Appl ventricular demand or atrial synchronous pacing. Br Physiol 1988;57:159-62. Heart J 1988;60:212-20. 24 Svanegaard J, Angelo-Nielsen K, Hansen JS. Physiological 28 Kruse I, Amman K, Conradson T-B, et al. A comparison of hypertrophy of the heart and atrial natriuretic peptide acute and long-term hemodynamic effects of ventricular during rest and exercise. Br Heart J 1989;62:445-9. inhibited and atrial synchronous ventricular inhibited Br Heart J: first published as 10.1136/hrt.65.4.193 on 1 April 1991. Downloaded from 25 Ellenbogen KA, Kapadia K, Walsh M, Mohanty PK. pacing. Circulation 1982;65:846-55. Increase in plasma atrial natriuretic factor during 29 Rosenqvist M, Brandt J, Schuller H. Long-term pacing in ventriculoatrial pacing. Am J Cardiol 1989;64:236-7. sinus node disease: effects of stimulation mode on 26 Travill CM, Williams TDM, Vardas P, et al. Pacemaker cardiovascular morbidity and mortality. Am Heart J syndrome is associated with very high plasma concentra- 1988;116:16-22. tions ofatrial natriuretic peptide (ANF) [Abstract]. J Am 30 Sutton R, Kenny RA. The natural history of sick sinus Coll Cardiol 1989;13:111. -
Filipendula Ulmaria (L.) Maxim
6 May 2020 EMA/HMPC/595722/2019 Committee on Herbal Medicinal Products (HMPC) Addendum to Assessment report on Filipendula ulmaria (L.) Maxim. (= Spiraea ulmaria L.), herba Rapporteur(s) B Kroes Assessor(s) Jan van der Nat Peer-reviewer J Wiesner HMPC decision on review of monograph Filipendula ulmaria (L.) Maxim. (= Spiraea 30 January 2018 ulmaria L.), herba adopted on July 2011 Call for scientific data (start and end date) From 30 April 2018 to 31 July 2018 Adoption by Committee on Herbal Medicinal 6 May 2020 Products (HMPC) Review of new data on Filipendula ulmaria (L.) Maxim., herba Periodic review (from 2011 to 2018) Scientific data (e.g. non-clinical and clinical safety data, clinical efficacy data) Pharmacovigilance data (e.g. data from EudraVigilance, VigiBase, national databases) Scientific/Medical/Toxicological databases: Scopus, PubMed, Embase, ToxNet Other Regulatory practice Old market overview in AR (i.e. products fulfilling 30/15 years on the market) New market overview (including pharmacovigilance actions taken in member states) – information from Member States (reporting between November 2018 and January 2019): Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Referral Ph.Eur. monograph: Filipendulae ulmariae herba 04/2013:1868 Currently: request for revision: replacement of hexane in TLC identification. Other Consistency (e.g. scientific decisions taken by HMPC) Public statements or other decisions taken by HMPC Consistency with other monographs within the therapeutic area Other Availability of new information (i.e. -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Introduction to Neotropical Entomology and Phytopathology - A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. VI - Introduction to Neotropical Entomology and Phytopathology - A. Bonet and G. Carrión INTRODUCTION TO NEOTROPICAL ENTOMOLOGY AND PHYTOPATHOLOGY A. Bonet Department of Entomology, Instituto de Ecología A.C., Mexico G. Carrión Department of Biodiversity and Systematic, Instituto de Ecología A.C., Mexico Keywords: Biodiversity loss, biological control, evolution, hotspot regions, insect biodiversity, insect pests, multitrophic interactions, parasite-host relationship, pathogens, pollination, rust fungi Contents 1. Introduction 2. History 2.1. Phytopathology 2.1.1. Evolution of the Parasite-Host Relationship 2.1.2. The Evolution of Phytopathogenic Fungi and Their Host Plants 2.1.3. Flor’s Gene-For-Gene Theory 2.1.4. Pathogenetic Mechanisms in Plant Parasitic Fungi and Hyperparasites 2.2. Entomology 2.2.1. Entomology in Asia and the Middle East 2.2.2. Entomology in Ancient Greece and Rome 2.2.3. New World Prehispanic Cultures 3. Insect evolution 4. Biodiversity 4.1. Biodiversity Loss and Insect Conservation 5. Ecosystem services and the use of biodiversity 5.1. Pollination in Tropical Ecosystems 5.2. Biological Control of Fungi and Insects 6. The future of Entomology and phytopathology 7. Entomology and phytopathology section’s content 8. ConclusionUNESCO – EOLSS Acknowledgements Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Insects are among the most abundant and diverse organisms in terrestrial ecosystems, making up more than half of the earth’s biodiversity. To date, 1.5 million species of organisms have been recorded, although around 85% of potential species (some 10 million) have not yet been identified. In the case of the Neotropics, although insects are clearly a vital element, there are many families of organisms and regions that are yet to be well researched. -
Meadowsweet 2015
ONLINE SERIES MONOGRAPHS The Scientific Foundation for Herbal Medicinal Products Filipendulae ulmariae herba Meadowsweet 2015 www.escop.com The Scientific Foundation for Herbal Medicinal Products FILIPENDULAE ULMARIAE HERBA Black Cohosh 2015 ESCOP Monographs were first published in loose-leaf form progressively from 1996 to 1999 as Fascicules 1-6, each of 10 monographs © ESCOP 1996, 1997, 1999 Second Edition, completely revised and expanded © ESCOP 2003 Second Edition, Supplement 2009 © ESCOP 2009 ONLINE SERIES ISBN 978-1-901964-37-0 Filipendulae ulmariae herba - Meadowsweet © ESCOP 2015 Published by the European Scientific Cooperative on Phytotherapy (ESCOP) Notaries House, Chapel Street, Exeter EX1 1EZ, United Kingdom www.escop.com All rights reserved Except for the purposes of private study, research, criticism or review no part of this text may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without the written permission of the publisher. Important Note: Medical knowledge is ever-changing. As new research and clinical experience broaden our knowledge, changes in treatment may be required. In their efforts to provide information on the efficacy and safety of herbal drugs and herbal preparations, presented as a substantial overview together with summaries of relevant data, the authors of the material herein have consulted comprehensive sources believed to be reliable. However, in view of the possibility of human error by the authors or publisher of the work herein, or changes in medical knowledge, neither the authors nor the publisher, nor any other party involved in the preparation of this work, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for results obtained by the use of such information. -
Best Plants for Problem Clay Soils: Perennials
Visit us on the Web: www.gardeninghelp.org Best Plants for Problem Clay Soils: Perennials Perennials Amsonia tabernaemontana — Bluestar This Missouri native features uptight clusters of light blue star-like flowers in late spring. Its narrow willow-like leaves turn yellow to peach-colored in fall. Bluestar may require staking if grown in shade and may be pruned after flowering to maintain a compact shape. It is most attractive when grown massed, in native plant gardens, shade gardens, open woodland areas, and borders. Asclepias incarnata — Swamp milkweed Despite its common name and native habitat, swamp milkweed may be grown in the average garden. Its fragrant white, pink or mauve flowers attract butterflies and mature into slender pods with silky-haired seeds. Swamp milkweed is a good choice for sunny, low or moist areas such as stream or pond banks, borders, and butterfly gardens. Baptisia australis — Blue false indigo Blue false indigo has beautiful purplish blue lupine-like flowers borne in erect spikes above the trifoliate leaves. The flowers mature into black seed pods that rattle in the breeze and are an interesting addition to dried flower arrangements. This herbaceous perennial does best in full sun as plants grown in part shade may grow taller and need support. Due to an extensive root system, blue false indigo will tolerate drought, but it should not be disturbed once it is established. Attractive in almost any situation including borders, prairies, cottage gardens, and native plant gardens, this plant is best used as a single specimen plant or in small groups. Baptisia australis var. -
Anti-Urolithiatic Activity of Filipendula Ulmaria Leaf Extracts in Male Albino Rats
CATRINA (2020), 22(1): 49-55 © 2020 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Anti-Urolithiatic Activity of Filipendula ulmaria Leaf Extracts in Male Albino Rats Rabab M. Aljarari*1 and Muna O. Alamoudi2 1 Biology Department, Faculty of Science, Jeddah University, Jeddah - Saudi Arabia 2 Biology Departments, Faculty of Science, Hail University, Hail City - Saudi Arabia ABSTRACT Filipendula ulmaria L. is a perennial herb that can be found in regions with higher humidity in Asia, and Europe. The herb is used medicinally as drugs for several purposes such as facilitating renal elimination functions and many other biological activities. Therefore, the present study was focus on the anti-Urolithiatic activity of Filipendula ulmaria leaf extracts using Albino rats as a model. The influence of oral administration of aqueous, methanolic and ethanolic extracts of Filipendula ulmaria leaves on accumulated calcium oxalate urolithiasis has been investigated. Nephrolithiasis was induced in the rats by oral administration of ethylene glycol (0.75%) in drinking water for 28 days. Animals were divided into nine groups, each containing six rats. Group 1 received purified water as negative control; group 2 received ethylene glycol in drinking water; group 3 received cystone as curative agent, groups 4-9 received Filipendula ulmaria extracts in dosages of 100 and 200 mg/kg body weight, respectively. The aqueous and methanolic Leaf-extracts showed significant reduction in the urine parameters compared to ethanolic extracts. However, using the cystone showed highest reduction rate compared to the leaf-extracts using different solvents. Cystone also recorded higher impact on the serum parameters compared to the extract used. -
Garden Design with Native Prairie Plants
Prairie Nursery | White Paper Designing Natural Landscapes: Garden Design with Native Prairie Plants CONTENT 1. Ecological Structure of the North American Neil Diboll, Consulting Ecologist Prairie Grassland With over 40 years of experience in research and establishment of 2. Garden Design Principles Using Prairie Plants native plant communities, Neil is an internationally recognized pioneer in 3. Integrating the Prairie Garden into the Landscape the use of North American plants in contemporary landscapes. His designs 3. Weed Control and Maintenance emphasize sustainability, aesthetics, and ecological compatibility with the 3. Plant Usage List for Prairie Gardens land. Neil is a regular keynote speaker on topics such as establishing prairie 6. Conclusion meadows, designing with native plants, and the benefits of converting resource-intensive landscapes into self- sustaining ecological sanctuaries. www.PrairieNursery.com PRAIRIE NURSERY P.O. Box 306, Westfield, WI 53964 1 800-476-9453 PRAIRIE NURSERY blue: #62cbe9 green: #68934d Portada Text : Book Designing Natural Landscapes: Garden Design with Native Prairie Plants Ecological Structure of the North American Prairie Grassland The North American Prairie is a grassland ecosystem. It is composed of hundreds of different flowers and grasses, but is dominated by a few vigorous and adaptable grasses: Botanical Name Common Name Prairie Habitat Andropogon gerardii Big Bluestem Dry to Wet Prairies Bouteloua curtipendula Side Oats Grama Dry Prairies Elymus canadensis Canada Wild Rye Dry to Wet Prairies Panicum virgatum Switchgrass Dry to Wet Prairies Schizachyrium scoparium Little Bluestem Dry to Medium Prairies Sorghastrum nutans Indiangrass Dry to Medium Prairies Sporobolus heterolepis Prairie Dropseed Dry to Medium Prairies Spartina pectinata Prairie Cordgrass Wet Prairies Although dozens of other grasses, sedges (Carex), and rushes (Scirpus) can be found on the American Prairie, the grasses listed above are the most commonly occurring and widespread across the entire prairie region. -
Assessment Report on Filipendula Ulmaria (L.) Maxim., Herba and Filipendula Ulmaria (L.) Maxim., Flos
12 July 2011 EMA/HMPC/434892/2010 Committee on Herbal Medicinal Products (HMPC) Assessment report on Filipendula ulmaria (L.) Maxim., herba and Filipendula ulmaria (L.) Maxim., flos Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific name of Filipendula ulmaria (L.) Maxim., herba the plant, including plant part) Filipendula ulmaria (L.) Maxim., flos Herbal preparation(s) Herb: a) Comminuted herbal substance b) Powdered herbal substance c) Tincture (ratio of herbal substance to extraction solvent 1:5), extraction solvent ethanol 45% (V/V) Flowers: Comminuted herbal substance Pharmaceutical forms Herb: Comminuted herbal substance as herbal tea for oral use. Powdered herbal substance in solid dosage forms for oral use. Herbal preparation in liquid dosage form for oral use. Flowers: Comminuted herbal substance as herbal tea for oral use. Rapporteur Dr Emiel van Galen Assessors Dr Emiel van Galen Dr Burt Kroes Dr Jan van der Nat 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2011. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Introduction.......................................................................................................................3 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .3 1.2. Information about products on the market in the Member States .............................. 4 1.3. Search and assessment methodology.................................................................... 7 2. Historical data on medicinal use ........................................................................................7 2.1. -
(Filipendula Ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats
molecules Article Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats Kinga Stawarczyk 1, Aleksandra Chrupek 2, Agnieszka S˛ekara 2 , Michał Gostkowski 3 and Małgorzata Karbarz 1,* 1 Department of Biology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia Street 1, 35-310 Rzeszów, Poland; [email protected] 2 Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; [email protected] (A.C.); [email protected] (A.S.) 3 Department of Econometrics and Statistics, Institute of Economics and Finance, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-178518754 Abstract: A collection of herbs from the natural environment remains not only a source of raw mate- rial but also provides evidence of chemical differentiation of the local populations. This work aimed at performing a phytosociological analysis of seven different stands of meadowsweet (Filipendula ul- maria (L.) Maxim.) occurrence. A determination of total phenolic compounds and salicylates and the antioxidant activity of dried meadowsweet inflorescences (Flos ulmariae) was also performed. Active Citation: Stawarczyk, K.; Chrupek, chemical compounds in F. ulmaria inflorescences were related to chemotype and diversified between A.; S˛ekara,A.; Gostkowski, M.; investigated populations. Geographical distance and variation in phytosociological locations affected Karbarz, M. Insight into the Way the chemical composition in different ways, shaping the content of biochemical compounds crucial for Content of Biologically Active herbal material quality. -
Ecological Checklist of the Missouri Flora for Floristic Quality Assessment
Ladd, D. and J.R. Thomas. 2015. Ecological checklist of the Missouri flora for Floristic Quality Assessment. Phytoneuron 2015-12: 1–274. Published 12 February 2015. ISSN 2153 733X ECOLOGICAL CHECKLIST OF THE MISSOURI FLORA FOR FLORISTIC QUALITY ASSESSMENT DOUGLAS LADD The Nature Conservancy 2800 S. Brentwood Blvd. St. Louis, Missouri 63144 [email protected] JUSTIN R. THOMAS Institute of Botanical Training, LLC 111 County Road 3260 Salem, Missouri 65560 [email protected] ABSTRACT An annotated checklist of the 2,961 vascular taxa comprising the flora of Missouri is presented, with conservatism rankings for Floristic Quality Assessment. The list also provides standardized acronyms for each taxon and information on nativity, physiognomy, and wetness ratings. Annotated comments for selected taxa provide taxonomic, floristic, and ecological information, particularly for taxa not recognized in recent treatments of the Missouri flora. Synonymy crosswalks are provided for three references commonly used in Missouri. A discussion of the concept and application of Floristic Quality Assessment is presented. To accurately reflect ecological and taxonomic relationships, new combinations are validated for two distinct taxa, Dichanthelium ashei and D. werneri , and problems in application of infraspecific taxon names within Quercus shumardii are clarified. CONTENTS Introduction Species conservatism and floristic quality Application of Floristic Quality Assessment Checklist: Rationale and methods Nomenclature and taxonomic concepts Synonymy Acronyms Physiognomy, nativity, and wetness Summary of the Missouri flora Conclusion Annotated comments for checklist taxa Acknowledgements Literature Cited Ecological checklist of the Missouri flora Table 1. C values, physiognomy, and common names Table 2. Synonymy crosswalk Table 3. Wetness ratings and plant families INTRODUCTION This list was developed as part of a revised and expanded system for Floristic Quality Assessment (FQA) in Missouri.