Chemistry of Natural Products - J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Compounds, Pharmacological and Toxicological Activity of Brugmansia Suaveolens: a Review
plants Review Chemical Compounds, Pharmacological and Toxicological Activity of Brugmansia suaveolens: A Review Vera L. Petricevich 1 , David Osvaldo Salinas-Sánchez 2, Dante Avilés-Montes 3, Cesar Sotelo-Leyva 4 and Rodolfo Abarca-Vargas 1,* 1 Faculty of Medicine, Autonomous University of the State of Morelos (UAEM), Street: Leñeros, esquina Iztaccíhuatl s/n. Col. Volcanes, Cuernavaca 62350, Morelos, Mexico; [email protected] 2 Biodiversity and Conservation Research Center, Autonomous University of the State of Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; [email protected] 3 Faculty of Biological Science, Autonomous University of the State of Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; [email protected] 4 Faculty of Chemistry-Biological Sciences, Autonomous University of Guerrero Av. Lázaro Cárdenas s/n, South University City, Chilpancingo 39000, Guerrero, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-777-361-2155 Received: 30 July 2020; Accepted: 3 September 2020; Published: 8 September 2020 Abstract: This study investigates updated information in different search engines on the distribution, phytochemistry, pharmacology, and toxicology of Brugmansia suaveolens (Solanaceae) using the extracts or chemical compounds at present. This plant has been used in traditional medicine in different cultures as a hallucinatory, analgesic, aphrodisiac, nematicide, sleep inducer, and muscle relaxant, as well as a treatment for rheumatism, asthma, and inflammation. The flowers, fruits, stems, and roots of the plant are used, and different chemical compounds have been identified, such as alkaloids, volatile compounds (mainly terpenes), coumarins, flavonoids, steroids, and hydrocarbons. The concentration of the different compounds varies according to the biotic and abiotic factors to which the plant is exposed. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
PLGG1, a Plastidic Glycolate Glycerate Transporter, Is Required for Photorespiration and Defines a Unique Class of Metabolite Transporters
PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters Thea R. Picka,1, Andrea Bräutigama,1, Matthias A. Schulza, Toshihiro Obatab, Alisdair R. Fernieb, and Andreas P. M. Webera,2 aInstitute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany; and bMax-Planck Institute for Molecular Plant Physiology, Department of Molecular Physiology, 14476 Potsdam-Golm, Germany Edited by Wolf B. Frommer, Carnegie Institution for Science, Stanford, CA, and accepted by the Editorial Board January 8, 2013 (received for review September 4, 2012) Photorespiratory carbon flux reaches up to a third of photosyn- (PGLP). Glycolate is exported from the chloroplasts to the per- thetic flux, thus contributes massively to the global carbon cycle. oxisomes, where it is oxidized to glyoxylate by glycolate oxidase The pathway recycles glycolate-2-phosphate, the most abundant (GOX) and transaminated to glycine by Ser:glyoxylate and Glu: byproduct of RubisCO reactions. This oxygenation reaction of glyoxylate aminotransferase (SGT and GGT, respectively). Glycine RubisCO and subsequent photorespiration significantly limit the leaves the peroxisomes and enters the mitochondria, where two biomass gains of many crop plants. Although photorespiration is molecules of glycine are deaminated and decarboxylated by the a compartmentalized process with enzymatic reactions in the glycine decarboxylase complex (GDC) and serine hydroxymethyl- chloroplast, the peroxisomes, the mitochondria, and the cytosol, transferase (SHMT) to form one molecule each of serine, ammo- nia, and carbon dioxide. Serine is exported from the mitochondria no transporter required for the core photorespiratory cycle has to the peroxisomes, where it is predominantly converted to glyc- been identified at the molecular level to date. -
Variability of Two Essential Oils of Ammi Visnaga (L.) Lam
Journal of Medicinal Plants Research Vol. 5(20), pp. 5079-5082, 30 September, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Variability of two essential oils of Ammi visnaga (L.) Lam. a traditional Tunisian medicinal plant Ayda Khadhri 1*, Ridha El Mokni 2, Khaled Mguis 3, Inès Ouerfelli 4 and Maria Eduarda M. Araújo 5 1Unity of Research of Vegetal Ecology, Faculty of Sciences, University of El-Manar II, Campus Academia, 2092 Tunis, Tunisia. 2Laboratory of Botany and Plant Ecology, Department of Life Sciences, Faculty of Sciences, University of Carthage, Jarzouna 7021, Bizerta, Tunisia. 3Unité de physiologie et de biochimie de la tolérance au sel chez les plantes, Faculté des Sciences de Tunis, Université Tunis-El-Manar, 2092 Tunis, Tunisie. 4Laboratory of Organic Synthesis and heterocyclic, Department of Chemistry, Faculty of Sciences, University of El-Manar II, Campus Academia, 2092 Tunis, Tunisia. 5CQB, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Edifício C-8, Campo Grande, 1749-016 Lisbon, Portugal. Accepted 9 June, 2011 This study deals with the valorization of medicinal and aromatic plants of the Tunisian flora, in order to find new bioactive natural products. The essential oil constituents from the fruits of Ammi visnaga , collected from two Tunisian localities, Ichkeul and Djebba the North of Tunisia, were extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Forty-one compounds were identified. Both samples showed similar chemical composition, the major components were linalool, isoamyl 2-methyl butyrate and isopentyl isovalerate. Key words: Apiaceae, Ammi visnaga , essential oil composition, Gas chromatography-mass spectrometry (GC-MS) analysis. -
The Self-Inhibitory Nature of Metabolic Networks and Its Alleviation Through Compartmentalization
ARTICLE Received 30 Oct 2016 | Accepted 23 May 2017 | Published 10 Jul 2017 DOI: 10.1038/ncomms16018 OPEN The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization Mohammad Tauqeer Alam1,2, Viridiana Olin-Sandoval1,3, Anna Stincone1,w, Markus A. Keller1,4, Aleksej Zelezniak1,5,6, Ben F. Luisi1 & Markus Ralser1,5 Metabolites can inhibit the enzymes that generate them. To explore the general nature of metabolic self-inhibition, we surveyed enzymological data accrued from a century of experimentation and generated a genome-scale enzyme-inhibition network. Enzyme inhibition is often driven by essential metabolites, affects the majority of biochemical processes, and is executed by a structured network whose topological organization is reflecting chemical similarities that exist between metabolites. Most inhibitory interactions are competitive, emerge in the close neighbourhood of the inhibited enzymes, and result from structural similarities between substrate and inhibitors. Structural constraints also explain one-third of allosteric inhibitors, a finding rationalized by crystallographic analysis of allosterically inhibited L-lactate dehydrogenase. Our findings suggest that the primary cause of metabolic enzyme inhibition is not the evolution of regulatory metabolite–enzyme interactions, but a finite structural diversity prevalent within the metabolome. In eukaryotes, compartmentalization minimizes inevitable enzyme inhibition and alleviates constraints that self-inhibition places on metabolism. 1 Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. 2 Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. 3 Department of Food Science and Technology, Instituto Nacional de Ciencias Me´dicas y Nutricio´n Salvador Zubira´n, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico. -
Root Interactions with Non Pathogenic Fusarium Oxysporum. Hey
Root interactions with non pathogenic Fusarium oxysporum. Hey Fusarium oxysporum, what do you do in life when you do not infect a plant? Christian Steinberg, Charline Lecomte, Claude Alabouvette, Veronique Edel-Hermann To cite this version: Christian Steinberg, Charline Lecomte, Claude Alabouvette, Veronique Edel-Hermann. Root inter- actions with non pathogenic Fusarium oxysporum. Hey Fusarium oxysporum, what do you do in life when you do not infect a plant?. Belowground defense strategies in plants, Springer Interna- tional Publishing, 2016, Signaling and Communication in Plants, 978-3-319-42317-3 ISSN 1867-9048. 10.1007/978-3-319-42319-7. hal-01603982 HAL Id: hal-01603982 https://hal.archives-ouvertes.fr/hal-01603982 Submitted on 5 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Root Interactions with Nonpathogenic Fusarium oxysporum Hey Fusarium oxysporum, What Do You Do in Life When You Do Not Infect a Plant? Christian Steinberg, Charline Lecomte, Claude Alabouvette, and Ve´ronique Edel-Hermann Abstract In this review, we tried to present Fusarium oxysporum in an ecological context rather than to confine it in the too classic double play of the nonpathogenic fungus that protects the plant against the corresponding forma specialis. -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Plants in Cardiology
Double blind crossover comparison ofDDD and VVIR pacing in complete heart block 193 raised plasma atrial natriuretic peptide concentrations in 27 Pehrsson SK, Hjemdahl P, Nordlander R, Astrom H. A complete atrioventricular block. BMJ 1988;296:94. comparison of sympathoadrenal activity and cardiac 23 Follenius M, Brandenburger G. Increase in atrial natriuretic performance at rest and during exercise in patients with peptide in response to physical exercise. Eur J Appl ventricular demand or atrial synchronous pacing. Br Physiol 1988;57:159-62. Heart J 1988;60:212-20. 24 Svanegaard J, Angelo-Nielsen K, Hansen JS. Physiological 28 Kruse I, Amman K, Conradson T-B, et al. A comparison of hypertrophy of the heart and atrial natriuretic peptide acute and long-term hemodynamic effects of ventricular during rest and exercise. Br Heart J 1989;62:445-9. inhibited and atrial synchronous ventricular inhibited Br Heart J: first published as 10.1136/hrt.65.4.193 on 1 April 1991. Downloaded from 25 Ellenbogen KA, Kapadia K, Walsh M, Mohanty PK. pacing. Circulation 1982;65:846-55. Increase in plasma atrial natriuretic factor during 29 Rosenqvist M, Brandt J, Schuller H. Long-term pacing in ventriculoatrial pacing. Am J Cardiol 1989;64:236-7. sinus node disease: effects of stimulation mode on 26 Travill CM, Williams TDM, Vardas P, et al. Pacemaker cardiovascular morbidity and mortality. Am Heart J syndrome is associated with very high plasma concentra- 1988;116:16-22. tions ofatrial natriuretic peptide (ANF) [Abstract]. J Am 30 Sutton R, Kenny RA. The natural history of sick sinus Coll Cardiol 1989;13:111. -
Filipendula Ulmaria (L.) Maxim
6 May 2020 EMA/HMPC/595722/2019 Committee on Herbal Medicinal Products (HMPC) Addendum to Assessment report on Filipendula ulmaria (L.) Maxim. (= Spiraea ulmaria L.), herba Rapporteur(s) B Kroes Assessor(s) Jan van der Nat Peer-reviewer J Wiesner HMPC decision on review of monograph Filipendula ulmaria (L.) Maxim. (= Spiraea 30 January 2018 ulmaria L.), herba adopted on July 2011 Call for scientific data (start and end date) From 30 April 2018 to 31 July 2018 Adoption by Committee on Herbal Medicinal 6 May 2020 Products (HMPC) Review of new data on Filipendula ulmaria (L.) Maxim., herba Periodic review (from 2011 to 2018) Scientific data (e.g. non-clinical and clinical safety data, clinical efficacy data) Pharmacovigilance data (e.g. data from EudraVigilance, VigiBase, national databases) Scientific/Medical/Toxicological databases: Scopus, PubMed, Embase, ToxNet Other Regulatory practice Old market overview in AR (i.e. products fulfilling 30/15 years on the market) New market overview (including pharmacovigilance actions taken in member states) – information from Member States (reporting between November 2018 and January 2019): Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Referral Ph.Eur. monograph: Filipendulae ulmariae herba 04/2013:1868 Currently: request for revision: replacement of hexane in TLC identification. Other Consistency (e.g. scientific decisions taken by HMPC) Public statements or other decisions taken by HMPC Consistency with other monographs within the therapeutic area Other Availability of new information (i.e. -
Observations on Early Fungal Infections with Relevance for Replant Disease in Fine Roots of the Rose Rootstock Rosa Corymbifera
www.nature.com/scientificreports OPEN Observations on early fungal infections with relevance for replant disease in fne roots of the rose rootstock Rosa corymbifera ’Laxa’ G. Grunewaldt‑Stöcker 1, C. Popp1, A. Baumann2, S. Fricke1, M. Menssen3, T. Winkelmann 2* & E. Maiss1 Replant disease is a worldwide phenomenon afecting various woody plant genera and species, especially within the Rosaceae. Compared to decades of intensive studies regarding replant disease of apple (ARD), the replant disease of roses (RRD) has hardly been investigated. The etiology of RRD is also still unclear and a remedy desperately needed. In greenhouse pot trials with seedlings of the RRD‑sensitive rootstock Rosa corymbifera ‘Laxa’ cultured in replant disease afected soils from two diferent locations, early RRD symptom development was studied in fne roots. In microscopic analyses we found similarities to ARD symptoms with regards to structural damages, impairment in the root hair status, and necroses and blackening in the cortex tissue. Examinations of both whole mounts and thin sections of fne root segments revealed frequent conspicuous fungal infections in association with the cellular disorders. Particularly striking were fungal intracellular structures with pathogenic characteristics that are described for the frst time. Isolated fungi from these tissue areas were identifed by means of ITS primers, and many of them were members of the Nectriaceae. In a next step, 35 of these isolates were subjected to a multi‑locus sequence analysis and the results revealed that several genera and species were involved in the development of RRD within a single rose plant. Inoculations with selected single isolates (Rugonectria rugulosa and Ilyonectria robusta) in a Perlite assay confrmed their pathogenic relationship to early necrotic host plant reactions, and symptoms were similar to those exhibited in ARD. -
Pages 121-166
Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail -
11 the Evolutionary Strategy of Claviceps
Pažoutová S. (2002) Evolutionary strategy of Claviceps. In: Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts. White JF, Bacon CW, Hywel-Jones NL (Eds.) Marcel Dekker, New York, Basel, pp.329-354. 11 The Evolutionary Strategy of Claviceps Sylvie Pažoutová Institute of Microbiology, Czech Academy of Sciences Vídeòská 1083, 142 20 Prague, Czech Republic 1. INTRODUCTION Members of the genus Claviceps are specialized parasites of grasses, rushes and sedges that specifically infect florets. The host reproductive organs are replaced with a sclerotium. However, it has been shown that after artificial inoculation, C. purpurea can grow and form sclerotia on stem meristems (Lewis, 1956) so that there is a capacity for epiphytic and endophytic growth. C. phalaridis, an Australian endemite, colonizes whole plants of pooid hosts in a way similar to Epichloë and it forms sclerotia in all florets of the infected plant, rendering it sterile (Walker, 1957; 1970). Until now, about 45 teleomorph species of Claviceps have been described, but presumably many species may exist only in anamorphic (sphacelial) stage and therefore go unnoticed. Although C. purpurea is type species for the genus, it is in many aspects untypical, because most Claviceps species originate from tropical regions, colonize panicoid grasses, produce macroconidia and microconidia in their sphacelial stage and are able of microcyclic conidiation from macroconidia. Species on panicoid hosts with monogeneric to polygeneric host ranges predominate. 329 2. PHYLOGENETIC TREE We compared sequences of ITS1-5.8S-ITS2 rDNA region for 19 species of Claviceps, Database sequences of Myrothecium atroviride (AJ302002) (outgroup from Bionectriaceae), Epichloe amarillans (L07141), Atkinsonella hypoxylon (U57405) and Myriogenospora atramentosa (U57407) were included to root the tree among other related genera.