Improvement of Silicon Oxide Quality Using Heat Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Improvement of Silicon Oxide Quality Using Heat Treatment University of Kentucky UKnowledge Theses and Dissertations--Electrical and Computer Engineering Electrical and Computer Engineering 2012 IMPROVEMENT OF SILICON OXIDE QUALITY USING HEAT TREATMENT Lei Han University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Han, Lei, "IMPROVEMENT OF SILICON OXIDE QUALITY USING HEAT TREATMENT" (2012). Theses and Dissertations--Electrical and Computer Engineering. 5. https://uknowledge.uky.edu/ece_etds/5 This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s dissertation including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Lei Han, Student Dr. Zhi Chen, Major Professor Dr. Zhi Chen, Director of Graduate Studies IMPROVEMENT OF SILICON OXIDE QUALITY USING HEAT TREATMENT THESIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the College of Engineering at the Universit y of Kentucky By Lei Han Lexington, Kentucky Directors: Dr. Zhi Chen, Professor of Electrical Engineering Department Lexington, Kentucky 2012 Copyright © Lei Han 2012 ABSTRACT OF THESIS IMPROVEMENT OF SILICON OXIDE QUALITY USING HEAT TREATMENT In decades, the tremendous development of integrated circuits industry could be mostly attributed to SiO2, since its satisfactory properties as a gate dielectric candidate. The effectivity of SiO2 has been challenged since dielectric layer was scaled down below 3nm, when the gate leakage current of SiO2 became unacceptable. Institution to silicon- based CMOS techniques were proposed, but they have their own limitations. Nowadays, materials with high dielectric constants are mainstream gate dielectric materials in industry, but a SiO2 interfacial layer is still necessary to avoid gap between gate dielectric layer and Si substrate, and to minimize interface trap charges. In this thesis work, by ap- plying lateral heating process on Si wafer with thermally grown ultrathin SiO2, the gate leakage current density could be reduced by 3-5 order of magnitude. MOS capacitors were fabricated, and electrical properties were tested with semiconductor parameter ana- lyzer and LCR meter. The underlying mechanism of this appealing phenomenon was ex- plored. Since unacceptable gate leakage current is one of the main reasons which prevent the scaling trend in semiconductor industry, this technology brings a possibility to post- pone the end of scaling trend, and pave a way for extensive application in industry. A new method for fabrication of MOS capacitors metal gate has been developed, and lift-off process has been replaced by wet etching process. This method provides better contact between dielectric layer and metal gate, meanwhile much easier operation. KEYWORDS: Gate Leakage Current, Silicon Oxide, Leatral Heating Process, Silicon Structure Change, Wet Etching Lei Han June 2, 2012 IMPROVEMENT OF SILICON OXIDE QUALITY USING HEAT TREATMENT By Lei Han Dr. Zhi Chen Director of Thesis Dr. Zhi Chen Director of Graduate Studies June 2, 2012 ACKNOWLEDGMENTS I would like to thank my academic advisor, Dr Zhi David Chen, for the opportunity he gave me to pursue my degree in the filed of semiconductor devices, and all the guidance and help I’ve received from him all through these years. This thesis would be impossible without his extensive knowledge and innovative ideas in this field. Special thanks should be accorded to Dr Chuck May and Brian Wajdyk for providing technical assistance at the Center for Nanoscale Science and Technology at University of Kentucky, and for helping me solving technical problems in my fabrication process. I would also like to thank Dr. Todd Hastings, Dr. Vijay Singh, and Dr. Fuqian Yang, for serving as committee members, and for the insightful guidance I’ve received from them. Thanks to my labmate, Yichun Wang, for the time and effort she spent on my fabrica- tion training process. I would also like to thank all my group members, Dr. Youngsik Song, Dr. Chi Lu, Dr. Shibin Li, Dr. Ibrahim Yucedag, Jun Fang, Chenglin Yi, Mengmei Liu, Bojie Chen, Riasad Badhan. Last but not least, I would like to express my deepest gratitude to my parents, for the endless love and support I have always been with since I was born. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES ...............................................................................................................v LIST OF FIGURES ........................................................................................................... vi Chapter 1 Introduction .........................................................................................................1 1.1 History of Device Scaling in Integrated Circuits .......................................................1 1.2 The Benefits of Device Scaling .................................................................................3 1.3 Scaling of the Gate Dielectrics ...................................................................................5 1.4 Moore’s Law Is Approaching an Limitation ..............................................................7 1.5 The Novel Phenomenon of Gate Dielectric Leakage Current Reduction ..................9 1.5.1 Theoretical background: Hydrogen/Deuterium isotope effect ..........................9 1.5.2 Phonon energy coupling enhancement effect ..................................................11 1.6 Motivation ................................................................................................................13 Chapter 2 MOS Capacitors Fabrication .............................................................................18 2.1 RCA Clean ...............................................................................................................18 2.2 Thermal Growth of Silicon Oxide ...........................................................................19 2.3 Introduction and Improvement of Heat Treatment Equipment ................................21 2.4 Lift-off Process for Patterning of MOS Capacitors Gates .......................................22 2.5 Back-side contact and post metallization annealing ................................................24 2.6 Current-Voltage, Capacitance-Voltage characteristics measurement ......................24 Chapter 3 Wet Etch Process for Patterning of MOS Capacitors Gates .............................28 Chapter 4 Rapid Thermal Process with Moisture ..............................................................39 Chapter 5 Lateral Heating Process Experiments and Results ............................................44 5.1 Background ..............................................................................................................44 5.2 Effect of Direct Hanging and Heat Transportation ..................................................45 5.3 Effect of Sandwich Structure ...................................................................................53 Chapter 6 Conclusion and Future Work ............................................................................59 6.1 Conclusion ...............................................................................................................59 6.2 Future Work .............................................................................................................59 Reference... ........................................................................................................................61 Vita……............... ..............................................................................................................65 iv LIST OF TABLES Table 1.1: Performance parameters improvement by constant-field scaling, α is the scaling factor for dimensions[9][10]. ....................................................................5
Recommended publications
  • Progress in Particle Tracking and Vertexing Detectors Nicolas Fourches
    Progress in particle tracking and vertexing detectors Nicolas Fourches (CEA/IRFU): 22nd March 2020, University Paris-Saclay Abstract: This is part of a document, which is devoted to the developments of pixel detectors in the context of the International Linear Collider. From the early developments of the MIMOSAs to the proposed DotPix I recall some of the major progresses. The need for very precise vertex reconstruction is the reason for the Research and Development of new pixel detectors, first derived from the CMOS sensors and in further steps with new semiconductors structures. The problem of radiation effects was investigated and this is the case for the noise level with emphasis of the benefits of downscaling. Specific semiconductor processing and characterisation techniques are also described, with the perspective of a new pixel structure. TABLE OF CONTENTS: 1. The trend towards 1-micron point-to-point resolution and below 1.1. Gaseous detectors : 1.2. Liquid based detectors : 1.3. Solid state detectors : 2. The solution: the monolithically integrated pixel detector: 2.1. Advantages and drawbacks 2.2. Spatial resolution : experimental physics requirements 2.2.1. Detection Physics at colliders 2.2.1.1. Track reconstruction 2.2.1.2. Constraints on detector design a) Multiple interaction points in the incident colliding particle bunches b) Multiple hits in single pixels even in the outer layers c) Large NIEL (Non Ionizing Energy Loss) in the pixels leading to displacement defects in the silicon layers d) Cumulative ionization in the solid state detectors leading to a total dose above 1 MGy in the operating time of the machine a) First reducing the bunch length and beam diameter would significantly limit the number of spurious interaction points.
    [Show full text]
  • Presentazione Di Powerpoint
    Noise measurements on 65 nm CMOS transistors at very high total ionizing dose V. Rea,c, L. Gaionia,c, L. Rattib,c, E. Riceputia,c, M. Manghisonia,c, G. Traversia,c c aUniversità di Bergamo bUniversità di Pavia INFN Sezione di Pavia Dipartimento di Ingegneria e Scienze Applicate Dipartimento di Ingegneria Industriale e dell’Informazione V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 1 Motivation 65 nm CMOS technology is a candidate for mixed-signal readout of high granularity silicon pixel sensors, with potential to meet the requirements of diverse applications such as particle tracking in the innermost layers of ATLAS and CMS at HL-LHC and photon imaging at very high brilliance and high rate light sources Tolerance to extremely high levels of ionizing radiation is a key requirement for both application fields, up to 1 Grad Total Ionizing Dose (TID) during chip lifetime. RD53 collaboration has carried out an extensive study of the behavior under irradiation of a 65 nm CMOS technology, with which a first generation of demonstrator chips is being designed The goal of this paper is to find out if 65 nm CMOS analog front- end circuits can still provide an adequate noise performance even at extremely high total doses. Study of radiation effects on noise can give very important hints about damage mechanisms. V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 2 Test devices and irradiation procedure A test chip was submitted and fabricated with the TSMC 65 nm
    [Show full text]
  • Circuit Optimisation Using Device Layout Motifs
    Circuit Optimisation using Device Layout Motifs Yang Xiao Ph.D. University of York Electronics July 2015 Abstract Circuit designers face great challenges as CMOS devices continue to scale to nano dimensions, in particular, stochastic variability caused by the physical properties of transistors. Stochas- tic variability is an undesired and uncertain component caused by fundamental phenomena associated with device structure evolution, which cannot be avoided during the manufac- turing process. In order to examine the problem of variability at atomic levels, the `Motif ' concept, defined as a set of repeating patterns of fundamental geometrical forms used as design units, is proposed to capture the presence of statistical variability and improve the device/circuit layout regularity. A set of 3D motifs with stochastic variability are investigated and performed by technology computer aided design simulations. The statistical motifs compact model is used to bridge between device technology and circuit design. The statistical variability information is transferred into motifs' compact model in order to facilitate variation-aware circuit designs. The uniform motif compact model extraction is performed by a novel two-step evolutionary algorithm. The proposed extraction method overcomes the drawbacks of conventional extraction methods of poor convergence without good initial conditions and the difficulty of simulating multi-objective optimisations. After uniform motif compact models are obtained, the statistical variability information is injected into these compact models to generate the final motif statistical variability model. The thesis also considers the influence of different choices of motif for each device on cir- cuit performance and its statistical variability characteristics. A set of basic logic gates is constructed using different motif choices.
    [Show full text]
  • Exploring the Ultimate Limits of Adiabatic Circuits
    Special Session: Exploring the Ultimate Limits of Adiabatic Circuits Michael P. Frank Robert W. Brocato Thomas M. Conte Alexander H. Hsia Cognitive & Emerging RF Microsystems Dept. Schools of Computer Science and Sandia National Laboratories Computing Dept. Sandia National Laboratories Electrical & Computer Eng. Albuquerque, NM, USA Sandia National Laboratories Albuquerque, NM, USA Georgia Institute of Technology Albuquerque, NM, USA orcid:0000-0001-9751-1234 Atlanta, GA, USA Requiescat in pace [email protected] [email protected] Anirudh Jain Nancy A. Missert Karpur Shukla Brian D. Tierney School of Computer Science Nanoscale Sciences Department Laboratory for Emerging Radiation Hard CMOS Georgia Institute of Technology Sandia National Laboratories Technologies Technology Dept. Atlanta, GA, USA Albuquerque, NM, USA Brown University Sandia National Laboratories [email protected] orcid:0000-0003-2082-2282 Providence, RI, USA Albuquerque, NM, USA orcid:0000-0002-7775-6979 [email protected] Abstract—The field of adiabatic circuits is rooted in electronics I. INTRODUCTION know-how stretching all the way back to the 1960s and has poten- tial applications in vastly increasing the energy efficiency of far- In 1961, Rolf Landauer of IBM observed that there is a fun- future computing. But now, the field is experiencing an increased damental physical limit to the energy efficiency of logically ir- level of attention in part due to its potential to reduce the vulnera- reversible computational operations, meaning, those that lose bility of systems
    [Show full text]
  • Intel's Atom Lines 1. Introduction to Intel's Atom Lines 3. Atom-Based Platforms Targeting Entry Level Desktops and Notebook
    Intel’s Atom lines • 1. Introduction to Intel’s Atom lines • 2. Intel’s low-power oriented CPU micro-architectures • 3. Atom-based platforms targeting entry level desktops and notebooks • 4. Atom-based platforms targeting tablets • 5. Atom-based platforms targeting smartphones • 6. Intel’s withdrawal from the mobile market • 7. References 1. Introduction to Intel’s Atom lines • 1.1 The rapidly increasing importance of the mobile market space • 1.2 Related terminology • 1.3 Introduction to Intel’s low-power Atom series 1.1 The rapidly increasing importance of the mobile market space 1.1 The rapidly increasing importance of the mobile market space (1) 1.1 The rapidly increasing importance of the mobile market space Diversification of computer market segments in the 2000’s Main computer market segments around 2000 Servers Desktops Embedded computer devices E.g. Intel’s Xeon lines Intel’s Pentium 4 lines ARM’s lines AMD’s Opteron lines AMD’s Athlon lines Major trend in the first half of the 2000’s: spreading of mobile devices (laptops) Main computer market segments around 2005 Servers Desktops Mobiles Embedded computer devices E.g. Intel’s Xeon lines Intel’s Pentium 4 lines Intel’s Celeron lines ARM’s lines AMD’s Opteron lines AMD’s Athlon64 lines AMD’s Duron lines 1.1 The rapidly increasing importance of the mobile market space (2) Yearly worldwide sales and Compound Annual Growth Rates (CAGR) of desktops and mobiles (laptops) around 2005 [1] 350 300 Millions 250 CAGR 17% 200 Mobile 150 100 Desktop CAGR 5% 50 0 2003 2004 2005 2006 2007 2008
    [Show full text]
  • Intel's Core 2 Family
    Intel’s Core 2 family - TOCK lines Kaby Lake to Coffee Lake Dezső Sima Vers. 3.1 October 2018 Contents (1) • 1. Introduction • 2. The Core 2 line • 3. The Nehalem line • 4. The Sandy Bridge line • 5. The Haswell line • 6. The Skylake line • 7. The Kaby Lake line • 8. The Kaby Lake Refresh line • 9. The Coffee Lake line • 10. The Coffee Lake line Refresh Contents (2) • 11. The Cannon Lake line (outlook) • 12. References 7. The Kaby Lake line • 7.1 Introduction to the Kaby Lake line • 7.2 Major enhancements of the Kaby Lake line • 7.3 Major innovation of the Kaby Lake line: The Optane memory • 7.4 Kaby Lake-based processor lines 7.1 Introduction to the Kaby Lake line 7.1 Introduction to the Kaby Lake line (1) 7.1 Introduction to the Kaby Lake line • The 7th generation Kaby Lake line is actually a Skylake refresh line (Tock line) manufactured on 14 nm technology. • Note that Intel designates it as a new generation in contrast to the Devil’s Cannon models that were similar optimizations then of the Haswell (4. generation) line. 22 nm 14 nm Ivy Bridge Haswell Broadwell Skylake Kaby Lake 3. gen. 4. gen 5. gen. 6. gen. 7. gen. Figure: Enhancing the Tick-Tock model with an optimization phase [225] • It is important to note that with the 14 nm technology the cadence of Intel’s technology transitions slowed down to about 2.5 years, as Kranich, Intel’s CEO stated at Intel’s Q2 2015 Investor's conference call (07/2015).
    [Show full text]
  • Advanced Source/Drain and Contact Design for Nanoscale CMOS
    Advanced Source/Drain and Contact Design for Nanoscale CMOS Reinaldo Vega Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2010-84 http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-84.html May 20, 2010 Copyright © 2010, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Advanced Source/Drain and Contact Design for Nanoscale CMOS by Reinaldo Vega A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Chenming Hu Professor Junqiao Wu Spring 2010 Advanced Source/Drain and Contact Design for Nanoscale CMOS Copyright © 2010 by Reinaldo Vega Abstract Advanced Source/Drain and Contact Design for Nanoscale CMOS by Reinaldo Vega Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The development of nanoscale MOSFETs has given rise to increased attention paid to the role of parasitic source/drain and contact resistance as a performance-limiting factor. Dopant-segregated Schottky (DSS) source/drain MOSFETs have become popular in recent years to address this series resistance issue, since DSS source/drain regions comprise primarily of metal or metal silicide.
    [Show full text]
  • A Case for Packageless Processors
    A Case for Packageless Processors Saptadeep Pal∗, Daniel Petrisko†, Adeel A. Bajwa∗, Puneet Gupta∗, Subramanian S. Iyer∗, and Rakesh Kumar† ∗Department of Electrical and Computer Engineering, University of California, Los Angeles †Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign fsaptadeep,abajwa,s.s.iyer,[email protected], fpetrisk2,[email protected] Abstract—Demand for increasing performance is far out- significantly limit the number of supportable IOs in the pacing the capability of traditional methods for performance processor due to the large size and pitch of the package- scaling. Disruptive solutions are needed to advance beyond to-board connection relative to the size and pitch of on- incremental improvements. Traditionally, processors reside inside packages to enable PCB-based integration. We argue chip interconnects (∼10X and not scaling well). In addition, that packages reduce the potential memory bandwidth of a the packages significantly increase the interconnect distance processor by at least one order of magnitude, allowable thermal between the processor die and other dies. Eliminating the design power (TDP) by up to 70%, and area efficiency by package, therefore, has the potential to increase bandwidth a factor of 5 to 18. Further, silicon chips have scaled well by at least an order of magnitude(Section II). Similarly, while packages have not. We propose packageless processors - processors where packages have been removed and dies processor packages are much bigger than the processor itself directly mounted on a silicon board using a novel integra- (5 to 18 times bigger). Removing the processor package tion technology, Silicon Interconnection Fabric (Si-IF).
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 3.2
    The Intel x86 Microarchitectures Map Version 3.2 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P6 (1995, 0.50 to 0.35 μm) Skylake (2015, 14 nm) NetBurst (2000 , 180 to 130 nm) Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: i686 Alternative Names: SKL (Desktop and Mobile), SKX (Server) (Note : all U and Y processors are MCPs) P5 (1993, 0.80 to 0.35 μm) Alternative Names: Pentium 4, Pentium IV, P4 • 16-bit data bus: Series: Series: Pentium Pro (used in desktops and servers) Series: Alternative Names: Pentium, Series: 8086 (iAPX 86) • Desktop/Server: i386DX Variant: Klamath (1997, 0.35 μm) • Desktop: Desktop 6th Generation Core i5 (i5-6xxx, S-H) 80586, 586, i586 • Desktop: Pentium 4 1.x (except those with a suffix, Willamette, 180 nm), Pentium 4 2.0 (Willamette, 180 • 8-bit data bus: • Desktop lower-performance: i386SX Alternative Names: Pentium II, PII • Desktop higher-performance: Desktop 6th Generation Core i7 (i7-6xxx, S-H), Desktop 7th Generation Core i7 X (i7-7xxxX, X), Desktop 7th Series: nm) 8088 (iAPX 88) • Mobile: i386SL, 80376, i386EX, Series: Pentium II 233/266/300 steppings C0 and C1 (Klamath, used in desktops) Generation Core i9 X (i7-7xxxXE, i7-7xxxX, X), Desktop 9th Generation Core i7 X (i7-9xxxX, X, 14 nm++?), Desktop 9th Generation Core i9 X • Desktop/Server: P5, P54C • Desktop higher-performance: Pentium 4 1.xA (Northwood, 130 nm), Pentium 4 2.x (except 2.0, 2.40A, i386CXSA, i386SXSA, i386CXSB New instructions: Deschutes (1998, 0.25 to 0.18 μm) (i7-9xxxXE, i7-9xxxX, X, 14 nm++?), Xeon W-3175X (W, 14 nm++?)
    [Show full text]
  • REPORT Moore's Law & the Value Transistor
    GILDER December 2002 / Vol.VII No.12 TECHNOLOGY Moore’s Law & REPORT The Value Transistor he big foundries, Taiwan Semiconductor Manufacturing Corporation (TSM) and United Microelectronics Corporation (UMC), have curtailed capital Texpenditures and are pushing out adoption dates for 300-mm (diameter) wafer production. The biggest integrated device manufacturers (IDMs), IBM, Intel (INTC), Samsung, and Texas Instruments (TXN), continue to spend on process development and are moving to 300-mm wafers. Conventional wisdom says that as the economy recovers, IDMs will be prepared for the upturn. And foundries, with lagging semicon- ductor processes that produce slower chips at higher costs, will lose market share. In the early days, foundries lagged IDMs by at least a couple of process genera- tions. Then they caught up with the IDMs—introducing large wafers and leading- “I thought Moore’s law edge processes right along with the major IDMs. Now, foundries seem about to fall drove the industry, behind. What is going on? Moore’s law is the rate of semiconductor manufacturing improvement—the num- until Tredennick and ber of transistors in a fixed area doubles every eighteen months. Big chips are more capa- ble; fixed-size functions fit on smaller chips. The magic of Moore’s-law progress comes Shimamoto introduced from three areas. Most important is shrinking transistor size. The second contributor is me to the value increasing chip and wafer size. Third is better circuit design. Chips get faster and cheap- er with manufacturing process improvements. If you find the current chips lacking, wait transistor. Here it is, a generation or two and they’ll have what you need.
    [Show full text]
  • Decadal Plan Full Report
    Decadal Plan for Semiconductors FULL REPORT Published January 2021 Table of Contents Introduction . 7 Acronym Defi nitions . 8 Chapter 1 New Trajectories for Analog Electronics. .12 Chapter 2 New Trajectories for Memory and Storage . .42 Chapter 3 New Trajectories for Communication . .76 Chapter 4 New Trajectories for Hardware Enabled ICT Security . 102 Chapter 5 New Compute Trajectories for Energy-Effi cient Computing. 122 1 Decadal Plan Executive Committee James Ang, PNNL Kevin Kemp, NXP Dave Robertson, Analog Devices Dmytro Apalkov, Samsung Taff y Kingscott, IBM Gurtej Sandhu, Micron Fari Assaderaghi, Sunrise Memory Stephen Kosonocky, AMD Motoyuki Sato, TEL Ralph Cavin, Independent Consultant Matthew Klusas, Amazon Ghavam Shahidi, IBM Ramesh Chauhan, Qualcomm Steve Kramer, Micron Steve Son, SK hynix An Chen, IBM Donny Kwak, Samsung Mark Somervell, TEL Richard Chow, Intel Lawrence Loh, MediaTek Gilroy Vandentop, Intel Robert Clark, TEL Rafi c Makki, Mubadala Jeff rey Vetter, ORNL Maryam Cope, SIA Matthew Marinella, SNL Jeff rey Welser, IBM Debra Delise, Analog Devices Seong-Ho Park, SK hynix Jim Wieser, Texas Instruments Carlos Diaz, TSMC David Pellerin, Amazon Tomomari Yamamoto, TEL Bob Doering, Texas Instruments Daniel Rasic, SRC Ian Young, Intel Sean Eilert, Micron Ben Rathsak, TEL Todd Younkin, SRC Ken Hansen, Independent Consultant Wally Rhines, Cornami David Yeh, Texas Instruments Baher Haroun, Texas Instruments Heike Riel, IBM Victor Zhirnov, SRC Yeon-Cheol Heo, Samsung Kirill Rivkin, Western Digital Zoran Zvonar, Analog Devices Gilbert Herrera, SNL Juan Rey, Mentor (Siemens) The Decadal Plan Workshops that helped drive this report were supported by the U.S. Department of Energy, Advanced Scientifi c Computing Research (ASCR) and Basic Energy Sciences (BES) Research Programs, and the National Nuclear Security Agency, Advanced Simulation and Computing (ASC) Program.
    [Show full text]
  • Power and Thermal Management of System-On-Chip
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 Power and Thermal Management of System-on-Chip Liu, Wei Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Liu, W. (2011). Power and Thermal Management of System-on-Chip. Technical University of Denmark. IMM- PHD-2011-250 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Power and Thermal Management of System-on-Chip Wei Liu Kongens Lyngby 2011 IMM-PHD-2011-250 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk IMM-PHD: ISSN 0909-3192 Summary With greater integration of VLSI circuits, power consumption and power density have increased dramatically resulting in high chip temperatures and presenting a heat removal challenge.
    [Show full text]