Charge Trapping Dynamics Associated to MOSFET

Total Page:16

File Type:pdf, Size:1020Kb

Charge Trapping Dynamics Associated to MOSFET Abstract The evolution of semiconductor industry and material science has proven to be of great importance in most aspects of contemporary society. Metal-Oxide- Semiconductor (MOS) transistors in Integrated Circuits (IC) have assumed acentralpositioninmodernelectronicdevicesasthebrickunitsthatbuild this gigantic industry. The integration density has grown exponentially since their introduction in the 1960s with the aim of increasing their performance. Gordon Moore identified this trend in 1965, predicting the doubling of compo- nents in each technological generation in what we know as the Moore’s Law, leading to uninterrupted and stringent efforts to comply with it. To keep track with the roadmap, we have observed technological innovations such as the shrinking of the device dimensions from the micrometer to the nanome- ter scale, the introduction of new materials in the fabrication steps and the progressive abandonment of the planar design in favor of three-dimensional (3D) structures. Regrettably, the long-term reliability of the transistor perfor- mance was compromised with the introduction of these advances. On top of that, the fundamental physical background behind the transistor’s detrimental performance is still not entirely understood but the general agreement on the explanation is defect generation during the device operation over time, partic- ularly in the semiconductor-oxide interface. These oxide charges and interface traps dynamically interacting with the semiconductor charge contribute sig- nificantly to the electrical degradation. Eventually, the simulation, modeling, and characterization of defects degrading the transistor performance became an unavoidable subject of study. In the past, as purely electrical characteri- zation techniques could not entirely explain the complex phenomena affecting either the gate-oxide or the interface between the gate-oxide and the silicon substrate, some studies have employed a second variable additionally to the electrical techniques to fill the gaps in the comprehension of trapping effects (e.g. temperature, radiation). This thesis has focused on experimentally study- ing the trapping/de-trapping dynamics in the semiconductor-oxide interface by iii iv introducing a second-order effect applying magnetic fields. The two main types of defects, slow (or deep) and fast (or shallow) traps, are addressed through this novel experimental approach. The coupled magneto-conductivity effect may help to gain insight in the trapping effects that lead to the degradation in the performance of the transistor, and subsequent implication in the circuit reliability. Resumen La evolución en la industria de semiconductores y ciencia de materiales ha probado ser de gan importancia en muchos aspectos de la sociedad con- temporánea. Los transistores Metal-Óxido-Semiconductor (MOS) en circuitos integrados (IC) han asumido un papel central en dispositivos electrónicos mod- ernos como las unidades básicas que construyen esta industria. La densidad de integración de estos dispositivos ha crecido exponencialmente desde su intro- ducción en los años sesenta, con el propósito de incrementar su rendimiento. Gordon Moore identificó esta tendencia en 1965, donde predijo el incremento de componentes al doble en cada nueva generación tecnológica, en lo que cono- cemos como la Ley de Moore, y que requiere esfuerzos constantes y rigurosos para cumplirla. Para continuar con la hoja de ruta, hemos observado algunas innovaciones tecnológicas como la reducción de las dimensiones de los disposi- tivos desde la escala micrométrica a la nanométrica, la introducción de nuevos materiales en los procesos de fabricación y el abandono gradual del diseño planar hacia estructuras tridimensionales. Lamentablemente, la fiabilidad a largo plazo del rendimiento del transistor se vio afectada con la introducción de estos avances tecnológicos. Por si fuera poco, aun no se comprende del todo la física fundamental responsable de la deficiencia del rendimiento del transis- tor, aunque hay un acuerdo general en que la explicación está relacionada a la generación de defectos durante la operación del dispositivo a lo largo del tiempo, particularmente en la interfaz óxido-semiconductor. Estas cargas en el óxido y trampas en la interfaz que interactúan constantemente con la carga en el semiconductor contribuyen a la degradación eléctrica. Era de esperar que la simulación, el modelado y la caracterización de defectos que desgastan el rendimiento del transistor se volvieran temas de estudio. Anteriormente, debido a que las técnicas de caracterización puramente eléctricas no podían explicar completamente el fenómeno que afectaba tanto al óxido de compuerta como a la interfaz con el sustrato de silicio, algunos estudios utilizaron una segunda variable adicional a la caracterización eléctrica para llenar los hue- cos que existían en los efectos de atrapamiento (temperatura, radiación, etc.). v vi Esta tesis se enfoca en estudiar de manera experimental la dinámica de atra- pamiento/liberación de carga en la interfaz óxido semiconductor a través de la introducción de un efecto de segundo orden aplicando campos magnéti- cos. Los dos tipos principales de defectos se estudian utilizando esta novedosa aproximación experimental: trampas "lentas" (o profundas), y "rápidas" (o superficiales). El efecto combinado de magneto-conductividad podría ayudar acomprendermejorlosefectosdeatrapamientoquellevanaladegradación del rendimiento del transistor, y sus consecuencias en la confiabilidad a nivel circuital. Acknowledgements Me gustaría agradecer al Consejo Nacional de Ciencia y Tecnología (CONA- CyT) por haberme otorgado la beca durante mis estudios de doctorado. Quisiera expresar mi gratitud principalmente al Dr. Edmundo A. Gutiérrez D. por su guía y apoyo a través del programa doctoral. Esta gratitud la extiendo también al Dr. Francisco Gámiz y sus colaboradores, especialmente al Dr. Carlos Márquez, por haberme dado la oportunidad de trabajar bajo su supervisión en el Laboratorio de Nanoelectrónica en CITIC-UGR (Granada, España), muchos de los resultados reportados en este trabajo vienen del tiempo que trabaje ahí. Me gustaría además agradecer a GlobalFoundries por los fondos que financiaron este y otros proyectos. Este trabajo refleja también muchas discusiones con gente del área y mis ami- gos, expreso mi gratitud al Dr. Joel Molina, Dr. Reydezel Torres, Dr. Adrián Tec, Dr. Héctor Uribe, Jairo Méndez y René Valderrama, y al resto de amigos de INAOE. ALizbethRoblesporsuapoyoypaciencia. Amispadresyhermanosporcreerenmi. vii Contents Abstract iii Resumen v Acknowledgements vii List of Figures xi 1Introduction 1 1.1 Background . 1 1.2 Outline................................ 5 2Theoreticalframework 7 2.1 Hot carrier degradation . 7 2.2 Bias temperature instability . 10 2.3 Gate-Oxidebreakdown . 12 2.4 Chargetrappingdynamics . 14 3Methodology 17 3.1 MOSFET devices and parameter extraction . 17 3.1.1 ThresholdVoltageextraction . 19 3.1.2 Maximum transconductance and subthreshold swing . 20 3.1.3 Mobilityextraction . 21 3.2 The charge pumping technique . 22 3.3 Random Telegraph Signals and noise measurements . 24 3.3.1 Random Telegraph Signals . 24 3.3.2 Noise measurements . 28 3.4 Experimentalprotocol . 31 ix Contents x 4Charge-pumpingmeasurementsundermagneticfields 35 4.1 Experimentalsetupandmethodology . 35 4.2 Results and discussion . 36 4.2.1 Analysis for B =0 ..................... 37 6 5RTNandnoisemeasurementsundermagneticfields 43 5.1 Experimentalsetupandmethodology . 44 5.2 Results and discussion . 44 5.2.1 Analysis for B =0T .................... 50 6 6Conclusions 57 Bibliography 61 List of Figures 1.1 General structure of the bulk MOS transistor. 2 1.2 TEM of a high- dielectric plus a metal gate. The complex dielectric stack includes a SiO2 transition layer. Reproduced from [1]. 3 1.3 Semiconductor band diagram illustrating the location and en- ergy position of interface traps. 4 2.1 The degradation and recovery phases in time. 10 2.2 The Reaction-Diffusion model. Si-H bonds are broken at the Si- SiO2 followed by a Hydrogen diffusion into the oxide, leaving electrically active interface traps. 11 2.3 a) The missing atoms generate unpaired valence electrons in the surface and generate interface traps. b) After oxidation, the majority of states are filled with oxygen atoms. c) After annealing, interface defects is reduced by the Hydrogen bonding withtheremainingstates. 13 2.4 Energy band diagram of a pMOS transistor in weak inversion. The Fermi energy level defines the filling and the net charge. 15 3.1 The experimental setup performs the measurement via Semi- conductor Device Analyzer connected to either a test fixture to characterize the INAOE transistors, or to a probe station to characterizethe250nmtransistors. 18 3.2 Examples of the I-V traces for two separate devices: INAOE and 250nm transistors. 19 3.3 Threshold voltage definition via the second derivative method. Extractedfrom[2]. ......................... 20 3.4 The charge pumping technique is performed through the above experimental setup. Usually, drain and source are tied together whenreversebiased. ........................ 22 3.5 The charge pumping technique yields the five-region curve. a) The biasing conditions that lead to the characteristic Icp current in b). 23 xi List of Figures xii 3.6 An example of a signal affected by the stochastic trapping/de- trapping into oxide traps. The ID current fluctuates between two levels when a single oxide trap is activated. 25 3.7 Simplified energy band diagram for a transistor
Recommended publications
  • GALLIUM OXIDE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR ANALYTICAL MODELING and POWER TRANSISTOR DESIGN TRADES By
    GALLIUM OXIDE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR ANALYTICAL MODELING AND POWER TRANSISTOR DESIGN TRADES by Neil Austin Moser A Dissertation Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Electrical and Computer Engineering Committee: _________________________________ Dr. Nathalia Peixoto, Dissertation Director _________________________________ Dr. Qiliang Li, Committee Member _________________________________ Dr. Yuri Mishin, Committee Member _________________________________ Dr. Gregg Jessen, Committee Member _________________________________ Dr. Monson Hayes, Department Chair _________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School of Engineering Date:_____________________________ Fall Semester 2017 George Mason University Fairfax, VA Gallium Oxide Metal Oxide Semiconductor Field Effect Transistor Analytical Modeling and Power Transistor Design Trades A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University by Neil Austin Moser Master of Science George Mason University, 2013 Bachelor of Science University of Michigan-Ann Arbor, 2002 Director: Nathalia Peixoto, Professor Department of Electrical and Computer Engineering Fall Semester 2017 George Mason University Fairfax, VA Copyright 2017 Neil Austin Moser All Rights Reserved ii DEDICATION This is dedicated to my father, Gary Moser, who started me on the path to being an academic before I even really knew what that was and still encourages me to not be ignorant about anything to this day. iii ACKNOWLEDGEMENTS I would like to thank my wife, Morgan, and daughter, Schaefer, for putting up with me “working” on this for quite a long time. Also, I would like to thank my committee, especially Gregg Jessen who helped me find this exciting research and shepherded me the whole way and Nathalia Peixoto who put up with a lot of dead ends and redirections in topic along the way.
    [Show full text]
  • A Nanoscale Study of Mosfets Reliability and Resistive Switching in RRAM Devices
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Escola d’Enginyeria Electronic Engineering Department A nanoscale study of MOSFETs reliability and Resistive Switching in RRAM devices A dissertation submitted by Qian Wu in fulfillment of the requirements for the Degree of Doctor of Philosophy in Electronic and Telecommunication Engineering Supervised by Dr. Marc Porti i Pujal Bellaterra, November 2016 Universitat Autònoma de Barcelona Escola d’Enginyeria Electronic Engineering Department Dr. Marc Porti i Pujal, associate professor of the Electronic Engineering Department of the Universitat Autònoma de Barcelona, Certifies That the dissertation: A nanoscale study of MOSFETs reliability and Resistive Switching in RRAM devices submitted by Qian Wu to the School of Engineering in fulfillment of the requirements for the Degree of Doctor in the Electronic and Telecommunication Engineering Program, has been performed under his supervision. Dr. Marc Porti Bellaterra, November of 2016 To my family Acknowledgement The four years’ doctoral study is a significant and unforgettable experience for me. Many kind-hearted people give me a great amount of help, professional advice and encouragement.
    [Show full text]
  • Custom Design of Monolithic Microwave Integrated Circuits
    CRAIG R. MOORE and JOHN E. PENN CUSTOM DESIGN OF MONOLITHIC MICROWAVE INTEGRATED CIRCUITS Monolithic microwave integrated circuits (MMIC'S) have been designed at the Applied Physics Laboratory and fabricated at several gallium arsenide foundries since 1989. The design tools and methods for designing MMIC'S have evolved to the present use of integrated computer-aided engineering software with programmable design components. Software elements that can be customized create multilayer mask descriptions of components for transistors, resistors, capacitors, inductors, microstrip connections, and other structures to improve the quality and productivity of MMIC's designed at the Laboratory. The schematic, physical layout, and simulation models are integrated into a single software tool, eliminating much potential for error. Experience with various foundries and various MMIC design techniques have increased our ability to design at higher and higher frequencies with confidence in achieving first-time success. The design improvements have been accompanied by improvements in measurement techniques for higher frequencies using microwave probe stations. This article summarizes MMIC designs at the Laboratory over the past few years and the progress shown and lessons learned. COMPUTER-AIDED ENGINEERING DESIGN OF MMIC'S Software computer-aided engineering tools from and custom electrical models. Today, EEsof has a new EEsof, Inc., are the predominant means of designing TriQuint Smart Library containing physical and electrical monolithic microwave integrated circuits (MMIC'S) at APL. macros, which is being used in the MMIC design course A key feature of EEsof's Academy software for MMIC at JHU taught by both authors of this article. layout is the ease of adding both layout macros and A group of people including Dale Dawson of Westing­ custom electrical models.
    [Show full text]
  • Sponsored Programs Proposal Submission Report for the Period July 1, 2019 to June 30, 2020
    Sponsored Programs Proposal Submission Report For the period July 1, 2019 to June 30, 2020 Proposal PI Title Sponsor Name % Credited $ Requested Requested to PI Credited Start Date End Date 020 Acad Affairs/Provost Nancy Stamp IGE: Translational Research in Ecology and National Science 20% $96,593 8/1/2020 7/31/2023 Environmental Science (TREES) Foundation Nancy Um COVID: Critical Support for Foreign Language National Endowment for 100% $300,000 7/1/2020 6/30/2021 Instruction at Binghamton University the Humanities Valerie Imbruce Beckman Scholars Program 2021 Arnold and Mabel 100% $573,000 6/1/2021 5/31/2024 Beckman Foundation Total # Credited 2.20 Total $ Credited $969,593 020 Academic Affairs/Library Services Amy Gay COVID: Center for the Study of the 1960s: Institute of Museum and 100% $328,792 9/1/2020 8/31/2022 McKiernan Oral Interview Collection Library Services Heather Parks 2019-2020 Conservation & Preservation NYS Education Department 100% $61,955 4/1/2019 3/31/2020 Program Grant James Galbraith Library Collections 2019 - 2020 NYS Education Department 100% $21,991 7/1/2019 6/30/2020 Total # Credited 3.00 Total $ Credited $412,738 020 Anthropology Carl Lipo Eco-Educators: A Binghamton University- Environmental Protection 10% $10,000 1/1/2021 12/31/2021 Community Partnership for a Healthier Agency Chesapeake Bay Watershed Elizabeth Digangi Doctoral Dissertation Research: Support for National Science 100% $25,331 9/1/2020 8/31/2021 Helen Brandt: A Virtual Anthropological Foundation Approach to the Study of Commingled Human Remains
    [Show full text]
  • MARTIN HOLT Phone: 630-252-5180 Scientist, Nanoscience Fax: 630-252-0439 E-Mail: [email protected]
    Center for Nanoscale Materials Building 440, Room A139 MARTIN HOLT Phone: 630-252-5180 Scientist, Nanoscience Fax: 630-252-0439 E-mail: [email protected] Electron and X-ray Microscopy Group Argonne National Laboratory 9700 S Cass Ave., Argonne, IL 60439 Education Ph. D. Physics, University of Illinois Urbana-Champaign (2002) B. A. Physics and Mathematics, Rice University (1998) Research • Predictive control of classical and quantum material response at the nanoscale through interests synchrotron microscopy of strain, scaling, and structural dynamics • Coherent x-ray diffraction imaging and Bragg ptychography for nanoscale structural studies Argonne National Laboratory - Center for Nanoscale Materials (CNM) 2010-present Professional Scientist, Nanoscience Experience • Beamline Director - CNM/APS Hard X-ray Nanoprobe Beamline (2016 – present) Scientific productivity increase of ~2x over this time period o o APS-U Beamline Enhancement awarded - “The 4D Nanoprobe” • Scientific lead - CNM X-ray diffraction microscopy program (2010 – present) o Demonstrated 3D Bragg Projection Ptychography at ~20nm^3 resolution o Demonstrated 2D Bragg Projection Ptychography at 5nm spatial resolution o Observed large wave-vector phonon confinement in 10nm semiconductor membranes Argonne National Laboratory – Center for Nanoscale Materials (CNM) 2004-2010 Assistant Physicist • Co-principal investigator of Hard X-ray Nanoprobe Beamline Project – design, construction, commissioning, and acceptance • Development of a non-goniometer-based approach to hard x-ray nanoscale
    [Show full text]
  • Presentazione Di Powerpoint
    Noise measurements on 65 nm CMOS transistors at very high total ionizing dose V. Rea,c, L. Gaionia,c, L. Rattib,c, E. Riceputia,c, M. Manghisonia,c, G. Traversia,c c aUniversità di Bergamo bUniversità di Pavia INFN Sezione di Pavia Dipartimento di Ingegneria e Scienze Applicate Dipartimento di Ingegneria Industriale e dell’Informazione V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 1 Motivation 65 nm CMOS technology is a candidate for mixed-signal readout of high granularity silicon pixel sensors, with potential to meet the requirements of diverse applications such as particle tracking in the innermost layers of ATLAS and CMS at HL-LHC and photon imaging at very high brilliance and high rate light sources Tolerance to extremely high levels of ionizing radiation is a key requirement for both application fields, up to 1 Grad Total Ionizing Dose (TID) during chip lifetime. RD53 collaboration has carried out an extensive study of the behavior under irradiation of a 65 nm CMOS technology, with which a first generation of demonstrator chips is being designed The goal of this paper is to find out if 65 nm CMOS analog front- end circuits can still provide an adequate noise performance even at extremely high total doses. Study of radiation effects on noise can give very important hints about damage mechanisms. V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 2 Test devices and irradiation procedure A test chip was submitted and fabricated with the TSMC 65 nm
    [Show full text]
  • Circuit Optimisation Using Device Layout Motifs
    Circuit Optimisation using Device Layout Motifs Yang Xiao Ph.D. University of York Electronics July 2015 Abstract Circuit designers face great challenges as CMOS devices continue to scale to nano dimensions, in particular, stochastic variability caused by the physical properties of transistors. Stochas- tic variability is an undesired and uncertain component caused by fundamental phenomena associated with device structure evolution, which cannot be avoided during the manufac- turing process. In order to examine the problem of variability at atomic levels, the `Motif ' concept, defined as a set of repeating patterns of fundamental geometrical forms used as design units, is proposed to capture the presence of statistical variability and improve the device/circuit layout regularity. A set of 3D motifs with stochastic variability are investigated and performed by technology computer aided design simulations. The statistical motifs compact model is used to bridge between device technology and circuit design. The statistical variability information is transferred into motifs' compact model in order to facilitate variation-aware circuit designs. The uniform motif compact model extraction is performed by a novel two-step evolutionary algorithm. The proposed extraction method overcomes the drawbacks of conventional extraction methods of poor convergence without good initial conditions and the difficulty of simulating multi-objective optimisations. After uniform motif compact models are obtained, the statistical variability information is injected into these compact models to generate the final motif statistical variability model. The thesis also considers the influence of different choices of motif for each device on cir- cuit performance and its statistical variability characteristics. A set of basic logic gates is constructed using different motif choices.
    [Show full text]
  • Chip Scale Atomic Clock for Space  Space Qualified Crystal Oscillators  Oscillator Subsystems & Atomic Clocks for Space  Summary
    Space Timing Products Peter Cash Space Forum 2019 Agenda Space Qualified Oscillators & Clocks Frequency & Timing Division New Product: Chip Scale Atomic Clock for Space Space Qualified Crystal Oscillators Oscillator subsystems & atomic clocks for space Summary Space Forum 2019 2 Complete Timing (I) ID Market Position & ProductsT #1 supplier of IEEE1588, SyncE & GNSS network synchronization PLL IC and software Timing since 1992 Supplier of low phase noise/jitter PLL IC Clock synthesis, rate conversion, jitter attenuation and fan-out buffers Oscillators (TCXO), Timers Oscillators (MEMS, Normal), Clock Generators (Normal, PCIe) Oscillator Die, Clock Generators (Normal, PCIe, VCXO), Clock Conditioning, Buffers (Zero Delay) Clock Synthesizers, Buffers (PCIe), Multiplexers & Cross Point Switches, Logic Translators, Skew Management Timing since 1938 XO, VCXO, VCSO TCXO, OCXO - SAW & BAW technology GPS Disciplined Oscillators Precision Crystal (OCXO, TCXO) Embedded Atomic Clocks (CSAC, MAC) GPS Disciplined Oscillators Leader in high-precision IEEE1588 timestamping and SyncE PHY IC. Full support for precise MACSec Integrated Time Synchronization Module for IEEE1588 and SyncE SmartFusion2 SoC/FPGA IC complete software solution & reference design Space Forum 2019 3 Complete Timing (II) Rubidium Hydrogen Maser Cesium Rubidium CSAC OCXO EMXO TCXO VCXO/XO MEMS CPT Model Number MHM 2010 5071A XPRO SA.35 SA.45s OX-208 EX-421 TX-503 VT-803 MXT57 VC-840 DSC6100 Dimensions (cc) 500E+3 20E+3 338.4 45 17 13.3 1.521 506E-3 23E-3 15E-3 4E-3 2E-3 Temperature
    [Show full text]
  • Quantum Coherence Thermal Transistors
    Quantum coherence thermal transistors Shanhe Su,1 Yanchao Zhang,1 Bjarne Andresen,2 Jincan Chen1∗ 1Department of Physics and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China. 2Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. (Dated: May 31, 2021) Coherent control of self-contained quantum systems offers the possibility to fabricate smallest thermal transistors. The steady coherence created by the delocalization of electronic excited states arouses nonlinear heat transports in non-equilibrium environment. Applying this result to a three- level quantum system, we show that quantum coherence gives rise to negative differential thermal resistances, making the thermal transistor suitable for thermal amplification. The results show that quantum coherence facilitates efficient thermal signal processing and can open a new field in the application of quantum thermal management devices. PACS numbers: 05.90. +m, 05.70. –a, 03.65.–w, 51.30. +i A thermal transistor, like its electronic counterpart, is thermal flux is normally higher than the controlling (in- capable of implementing heat flux switching and mod- put) thermal flux, a thermal transistor is able to amplify ulating. The effects of negative differential thermal re- or switch a small signal. The amplification factor must sistance (NDTR) play a key role in the development of be tailored to suit specific situations. The Scovil and thermal transistors [1]. Classical dynamic descriptions Schulz-DuBois maser model is not applicable for fabricat- utilizing Frenkel-Kontorova lattices conclude that nonlin- ing thermal transistors, owing to the fact that its ampli- ear lattices are the origin of NDTR [2, 3]. Ben-Abdallah fication factor is simply a constant defined by the maser et al.
    [Show full text]
  • (1)4» W Transmission US 7,711,015 B2 Page 2
    US007711015B2 (12) Unlted States Patent (10) Patent N0.2 US 7,711,015 B2 Holonyak, Jr. et al. (45) Date of Patent: May 4, 2010 (54) METHOD FOR CONTROLLING OPERATION 4,845,535 A 7/1989 Yamanishi et a1. ........ .. 315/172 OF LIGHT EMITTING TRANSISTORS AND 4,958,208 A 9/1990 Tanaka ........... .. 357/34 LASER TRANSISTORS 5,003,366 A 3/1991 Mishima et al. 357/34 5,239,550 A 8/1993 Jain .......................... .. 372/45 75 _ . _ 5,293,050 A 3/1994 Chapple-Sokolet al. .... .. 257/17 ( ) Inventors‘ H‘irlonyagilh" UrbanIaL’ IL gs)’ 5,334,854 A 8/1994 Ono et al. ................... .. 257/13 1 0,“ eng’ ampalgn’ (U )’ 5,389,804 A 2/1995 Yokoyama et al. 257/197 Gabnelwalter, Urbana> IL (Us) 5,399,880 A 3/1995 Chand ............ .. 257/21 _ 5,414,273 A 5/1995 Shimura et al. ....... .. 257/17 (73) Asslgneei Th1? Board 0fTr_l1st_ees of The 5,588,015 A 12/1996 Yang .............. .. .. 372/45012 Unlverslty 0f 111111018, Urbana, IL (US) 5,684,308 A 11/1997 Lovejoy etal. ........... .. 257/184 5,723,872 A 3/1998 Seabaugh et al. ........... .. 257/25 ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) USC‘ 1540’) by 240 days‘ FOREIGN PATENT DOCUMENTS (21) APP1- NO-I 11/805359 JP 61231788 10/1986 (22) Filed: May 24, 2007 (Continued) (65) Prior Publication Data OTHER PUBLICATIONS Us Zoos/0240173 A1 Oct 2’ 2008 Light-Emitting Transistor: Light Emission From InGaP/GaAs Heterojunction Bipolar Transistors, M. Feng, N.
    [Show full text]
  • Cyclotron Autoresonance Maser (CARM) Amplifiers for RF Accelerator Drivers
    © 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Cyclotron Autoresonance Maser (CARM) Amplifiers for RF Accelerator Drivers W.L. Menningcr, B.G. Danly, C. Chen, K.D. Pendergast,and R.J. Temkin Plasma Fusion Center MassachusettsInstitute of Technology Cambridge, Massachusetts02139 D.L. Goodman, D.L. Birx Scientific ResearchLaboratory Sommerville. Massachusetts Abstract C. Description of a CARM Cyclotron autoresonancemaser (CARM) ampliiiers are un- The CARM is similar to a gyrotron, except that the elec- der investigation as a possible source of high-power (>lOO tromagnetic wave propagates with a phase velocity close to MW), high-frequency (>lO GHz) microwaves for powering the speed of light. The CARM typically employs relativistic the next generation of linear colliders. A design for a high- electron beams with pitch angles (a = ~~1/~1) smaller than power, short pulse, 17.136 GHz CARM amplifier, utilizing a that of the gyrotron. However, unlike gyrotrons and frce- 500 kV linear induction accelerator, is prcsentcd. electron lasers, there are few experimental demonstrations of the CARM [8,9,101. I. INTRODUCTION In design of a high-peak power CARM amplifier, the elec- tron beam energieswhich result in the most attractive operation are typically in the 0.5 - 2 MeV range. Consequently, beam A. Next Generation Collider Requirements generation for a high-power CARM amplifier is well suited to two accelerator technologies.
    [Show full text]
  • High Frequency Engineering
    Course Material On High Frequency Engineering Subject Code: PET6I102 Course: - B. Tech Discipline: - Electronics and Telecommunication Engineering Semester: - 6th Syllabus HIGH FREQUENCY ENGINEERING (PET6I102) MODULE-I Microwave Tubes- Limitations of conventional tubes, construction, operation; Properties of Klystron Amplifier, reflex Klystron, Magnetron, Travelling Wave Tube (TWT); Backward Wave Oscillator (BWO); Crossed field amplifiers. MODULE-II Microwave Solid State Devices- Limitation of conventional solid state devices at Microwaves; Transistors (Bipolar, FET); Diodes (Tunnel, Varactor, PIN), Transferred Electron Devices (Gunn diode); Avalanche transit time effect (IMPATT, TRAPATT, SBD); Microwave Amplification by Stimulated Emission of Radiation (MASER). MODULE-III Microwave Components- Analysis of Microwave components using s-parameters, Junctions (E, H, Hybrid), Directional coupler; Bends and Corners; Microwave posts, S.S. tuners, Attenuators, Phase shifter, Ferrite devices (Isolator, Circulator, Gyrator); Cavity resonator. MODULE-IV Introduction to Radar Systems- Basic Principle-Block diagram and operation of Radar; Radar range Equation; Pulse Repetition Frequency (PRF) and Range Ambiguities. Doppler Radars- Doppler determination of velocity, Continuous Wave (CW) radar and its limitations, Frequency Modulated Continuous Wave (FMCW) radar, Basic principle and operation of Moving Target Indicator (MTI) radar, Delay line cancellers, Blind speeds and staggered PRFs. Scanning and Tracking Techniques- Various scanning techniques (Horizontal, vertical, spiral, palmer, raster, nodding); Angle tracking systems (Lobe switching, conical scan, mono pulse). COPYRIGHT IS NOT RESERVED BY AUTHORS. AUTHOR IS NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS AND/OR REPRINT ISSUES CONTAINED IN THIS MATERIALS. THIS IS NOT MEANT FOR ANY COMMERCIAL PURPOSE & ONLY MEANT FOR PERSONAL USE OF STUDENTS FOLLOWING SYLLABUS PRINTED IN PREVIOUS PAGE.
    [Show full text]