Circuit Optimisation Using Device Layout Motifs

Total Page:16

File Type:pdf, Size:1020Kb

Circuit Optimisation Using Device Layout Motifs Circuit Optimisation using Device Layout Motifs Yang Xiao Ph.D. University of York Electronics July 2015 Abstract Circuit designers face great challenges as CMOS devices continue to scale to nano dimensions, in particular, stochastic variability caused by the physical properties of transistors. Stochas- tic variability is an undesired and uncertain component caused by fundamental phenomena associated with device structure evolution, which cannot be avoided during the manufac- turing process. In order to examine the problem of variability at atomic levels, the `Motif ' concept, defined as a set of repeating patterns of fundamental geometrical forms used as design units, is proposed to capture the presence of statistical variability and improve the device/circuit layout regularity. A set of 3D motifs with stochastic variability are investigated and performed by technology computer aided design simulations. The statistical motifs compact model is used to bridge between device technology and circuit design. The statistical variability information is transferred into motifs' compact model in order to facilitate variation-aware circuit designs. The uniform motif compact model extraction is performed by a novel two-step evolutionary algorithm. The proposed extraction method overcomes the drawbacks of conventional extraction methods of poor convergence without good initial conditions and the difficulty of simulating multi-objective optimisations. After uniform motif compact models are obtained, the statistical variability information is injected into these compact models to generate the final motif statistical variability model. The thesis also considers the influence of different choices of motif for each device on cir- cuit performance and its statistical variability characteristics. A set of basic logic gates is constructed using different motif choices. Results show that circuit performance and vari- ability mitigation can benefit from specific motif permutations. A multi-stage optimisation methodology is introduced, in which the processes of optimisation are divided into several stages. Benchmark circuits show the efficacy of the proposed methods. The results presented in this thesis indicate that the proposed methods are able to provide circuit performance improvements and are able to create circuits that are more robust against variability. ii Contents Abstract ii List of Figures vii List of Tables xx Acknowledgments xxiii Declaration xxiv Hypothesis xxv 1 Introduction 1 1.1 Motivation . 1 1.2 Aims and Objectives . 3 1.3 Organisation of The Thesis . 3 2 Transistor Scaling and Variability 6 2.1 Scaling of Transistor Device . 8 2.1.1 Scaling Principle . 8 2.1.2 Scaling Challenges . 10 2.2 Transistor Variability Classification . 15 2.2.1 Random/Stochastic Variation . 15 2.2.2 Systematic Variation . 15 2.3 Sources of Stochastic Variability . 17 2.3.1 Random Dopant Fluctuation . 17 2.3.2 Line Edge Roughness . 19 2.3.3 Interface Roughness . 20 2.3.4 Polysilicon Grain Boundaries . 21 2.4 Impact of Transistor Variability on Device/Circuit Performance and Monte Carlo Simulation . 22 2.4.1 Impact on Delay Time . 23 2.4.2 Impact on Leakage Current . 24 iii Contents iv 2.4.3 Monte Carlo Simulation (Statistical Simulation) . 25 2.5 Summary . 26 3 Motifs Physical Simulation 27 3.1 Device Simulation and Methodology . 28 3.1.1 CMOS Device Fabrication Flow . 28 3.1.2 3D Device Structure Simulation Methodology in TCAD . 32 3.2 Motifs Design Methodology . 42 3.2.1 Layout Consideration and Variability . 42 3.2.2 Motif Concept . 46 3.2.3 Motifs Design . 50 3.3 TCAD Statistical Variability Simulation Methodology . 53 3.3.1 Line Edge Roughness Modelling . 53 3.3.2 TCAD Statistical Simulation Approach . 58 3.4 Experiment Results and Discussion . 59 3.4.1 Motif Verification . 60 3.4.2 Statistical Motif Simulation Results . 63 3.5 Summary . 66 4 Evolutionary Algorithms 77 4.1 What is an Evolutionary Algorithm? . 79 4.2 Operation of an Evolutionary Algorithm . 80 4.2.1 Representation . 80 4.2.2 Selection . 80 4.2.3 Reproduction . 82 4.2.4 Evaluation . 88 4.2.5 Termination Criteria . 88 4.3 Type of Evolutionary Algorithm . 89 4.3.1 Genetic Algorithm . 89 4.3.2 Evolutionary Strategies . 90 4.3.3 Evolutionary Programming . 91 4.3.4 Genetic Programming . 91 4.3.5 Multi-Objective Evolutionary Algorithm (MOEA) . 92 4.4 Evolutionary Algorithm for VLSI Design . 93 4.4.1 Charateristics of Problem Instances . 93 4.4.2 Problem Instances Decomposition . 94 4.4.3 Application of EA on VLSI Design . 94 4.5 Summary . 97 5 Extraction and Modelling Statistical Motifs Compact Model 99 Contents v 5.1 Device Compact Model and Extraction Method . 100 5.1.1 Device Compact Model . 100 5.1.2 Model Extraction and Optimisation Methodology . 108 5.2 Two Step Evolutionary Algorithm Extraction Method . 109 5.2.1 Overview of Two Step Evolutionary Algorithm Model Extraction Method109 5.2.2 Representation . 111 5.2.3 Selection Process . 112 5.2.4 Mutation Process . 112 5.2.5 Motif Netlist Simulation . 113 5.2.6 Fitness Evaluation . 113 5.3 Experiment Results and Analysis . 116 5.3.1 Experiment Setting-up . 116 5.3.2 Reference Device Extraction . 116 5.3.3 O Shaped Device Extraction . 118 5.4 Statistical Device Layout Motif Compact Model Modelling . 122 5.4.1 Direct Statistical Compact Modelling methodology . 122 5.4.2 Statistical Compact Modelling Results and Verification . 126 5.5 Summary . 128 6 Circuit Optimisation using Motifs and Evolutionary Algorithm 130 6.1 Applying Motifs to Basic Logic Gates . 131 6.1.1 Logic Gates Test . 131 6.1.2 Exhaustive Testing . 132 6.1.3 Results and Observations . 133 6.2 Multi-Stage Evolutionary Algorithm for Circuit Optimisation . 145 6.2.1 Methodology . 145 6.2.2 First Stage EA Optimisation . 148 6.2.3 Second Stage EA Optimisation . 151 6.3 Evolutionary Algorithm Verification . 154 6.3.1 Benchmark Circuit I: XOR . 154 6.4 Benchmark Circuits Evaluation . 155 6.4.1 Benchmark Comparison Circuits . 155 6.4.2 Benchmark Circuit II: Half Adder . 159 6.4.3 Benchmark Circuit III: Full Adder . 161 6.5 Summary . 167 7 Conclusions and Future Work 168 7.1 Conclusions . 168 7.2 Summary . 169 7.3 Future Work . 172 Contents vi A NMOS Device TCAD Script 174 B Model Parameters Definition 182 C NMOS reference device netlist 185 Bibliography 186 List of Figures 1.1 A comparison of the transistor counts in various microprocessors, with a curve showing the projected counts following Moore's predictions of a doubling every 24 months [4]. 2 1.2 The thesis organisation diagram, which summaries main chapters' topics, key observations (represented by .) and points of interest (represented by •). 5 2.1 Trends in device electronics. The number of transistor per processor chip has increased (blue star line) as MOSFET device feature size scaling (red dot line). Evolution of MOSFET gate length is represented by filled red circles and ITRS predictions is shown by open red circles [9]. 8 2.2 A cross-sectional structure of scaled MOS device [11]. 9 2.3 Evolution of lithography wavelength (blue line) as silicon feature size (red dot line) scaling. As devices scale to nanometer regions, manufacturability chal- lenges \subwavelength gap" continue to grow. The illumination wavelength (193 nm) is much greater than the feature size (45 nm and below) [14]. 11 2.4 An example of lithography simulation of flip-flop. Because of pattern distor- tion, some of points in the layout are shorted and highlighted by red circle [16]. 12 2.5 The comparison of device layout pattern using OPC or no OPC [17]. The case where OPC correction is used obviously has higher yield than no OPC design. 13 2.6 Threshold voltage Vth roll-off and drain induced barrier lowering (DIBL). Vth decreases as the channel length reduction. In addition to this, Vth further reduced when drain voltage increases is caused by DIBL [25]. 14 2.7 Barrier height lowering due to channel length reduction [8]. 14 vii List of Figures viii 2.8 Random discrete dopant fluctuations illustrated in 3D device structure [22]. It is impossible to perfectly control the exact quantity and position of dopant atom while dopant atoms are being implanted into the silicon. These results in exact differences in the electronic characteristics of two transistors, even both are fabricated under the same conditions. 16 2.9 Line edge roughness (LER) in 3D device structure [22]. The random deviation between actual gate edges and ideal definition of gate edges is not avoided due to the limitation of resolution in optical lithography. LER results in enhanced lateral diffusion and effective channel length reduction. 16 2.10 Poly-silicon grain boundaries (PSG) and gate oxide roughness (TOX) in 3D device structure [22]. PSG is.
Recommended publications
  • Circuit Design and Analysis Temel Elektrik Mühendisli Ği, Cilt 1 , Fitzgerald
    Course Plan Ankara University Credit: 4 ECTS Engineering Faculty Class: Lecture: 3 hours Department of Engineering Physics Problem Hours: 0 Lab: 0 PEN207 Class Hours: Monday 09:30-12:15 (3 hours) CIRCUIT DESIGN AND Classroom: Seminar Hall (Seminer Salonu) ANALYSIS Office Hours: Friday 11:00-12:00 (Circuit Theory) Attendance: Mandatory Exams: Midterm (one midterm exam) % 30 Prof. Dr. Hüseyin Sarı Final Exam % 80 Passing Grade: 60 (C3) or higher 3 Course Materials and Textbook(s) Ankara University Engineering Faculty, Lecture notes (Ppoint): Dept. of Engineering Physics huseyinsari.net.tr Desler Circuit Design & Analysis (http://huseyinsari.net.tr/ders-pen207.htm) 2019 Fall Main book: PEN207 Circuit Design and Analysis Temel Elektrik Mühendisli ği, Cilt 1 , Fitzgerald. A. E. Higginbotham D. E.,Grabel A. Instructor : Prof. Dr. Hüseyin Sarı (Editor: Prof. Dr. Kerim Kıymaç, 3.Edition) A.U. Engineering Faculty, Dept. of Eng. Physics Office: Department of Eng. Phy., B-Block, Room:105 E-mail: [email protected][email protected] web: www.huseyinsari.net.tr Phone: (312) 203 3424 (office) ● 536 295 3555 (cell) 2 4 PEN207-Circuit Design & Analysis:Introduction 1 Textbooks Textbooks-Turkish Recommended Textbooks-1: Recommended (Turkish)Textbooks-3: Introductory Electric Circuits Schaum's Outline of Basic Circuit Elektrik Devreleri Elektrik Devreleri Elektrik Devreleri-I Circuit Analysis James W. Nilsson, James W. Nilsson, (Ders Kitabı ) - Teori ve Çözümlü Robert L. Boylestad Susan Riedel Analysis, 2nd Edition John O'Malley Susan Riedel Problem Çözümleri Örnekler Pearson Int. Edition 6th Ed. Palme Yayınevi (In library) (In library) (In library) Turgut İkiz , Ali Bekir Yıldız Papatya Bilim Yayınları Volga Yayıncılık 5 7 Textbooks Textbooks-Turkish Recommended Textbooks-2: Recommended (Turkish)Textbooks-4: Introduction to Electrical Schaum's Outline of Do ğru Akım Devreleri ve Electric Circuits Engineering: 3000 Solved Problem Çözümleri Richard C.
    [Show full text]
  • Presentazione Di Powerpoint
    Noise measurements on 65 nm CMOS transistors at very high total ionizing dose V. Rea,c, L. Gaionia,c, L. Rattib,c, E. Riceputia,c, M. Manghisonia,c, G. Traversia,c c aUniversità di Bergamo bUniversità di Pavia INFN Sezione di Pavia Dipartimento di Ingegneria e Scienze Applicate Dipartimento di Ingegneria Industriale e dell’Informazione V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 1 Motivation 65 nm CMOS technology is a candidate for mixed-signal readout of high granularity silicon pixel sensors, with potential to meet the requirements of diverse applications such as particle tracking in the innermost layers of ATLAS and CMS at HL-LHC and photon imaging at very high brilliance and high rate light sources Tolerance to extremely high levels of ionizing radiation is a key requirement for both application fields, up to 1 Grad Total Ionizing Dose (TID) during chip lifetime. RD53 collaboration has carried out an extensive study of the behavior under irradiation of a 65 nm CMOS technology, with which a first generation of demonstrator chips is being designed The goal of this paper is to find out if 65 nm CMOS analog front- end circuits can still provide an adequate noise performance even at extremely high total doses. Study of radiation effects on noise can give very important hints about damage mechanisms. V. Re – 10th International Meeting on Front-End Electronics, Krakow, May 30 – June 3, 2016 2 Test devices and irradiation procedure A test chip was submitted and fabricated with the TSMC 65 nm
    [Show full text]
  • SPICE 1: Tutorial
    SPICE 1: Tutorial Chris Winstead January 15, 2015 Chris Winstead SPICE 1: Tutorial January 15, 2015 1 / 28 Getting Started SPICE is designed to run as a classic console tool, aka a terminal command. If you are unfamiliar with the Linux terminal, you should spend some time to get acquainted with basic terminal commands, and how to organize and navigate directory structures (a directory is often called a \folder"). I prepared a quick-start terminal tutorial that you can review here: https://electronics.wiki.usu.edu/Linux_Tutorial If you plan to use NGSpice in the lab (which I recommend), then you may want to check out our NGSpice wiki page: https://electronics.wiki.usu.edu/NGSpice You can also find NGSpice information and the full manual here: http://ngspice.sourceforge.net/ You will also need to choose a text editor for preparing your SPICE files. I like to use Emacs (it has an optional SPICE mode that is pretty handy). Most students prefer to use GEdit. You can launch these editors from the terminal. Chris Winstead SPICE 1: Tutorial January 15, 2015 2 / 28 Creating a Project First, you'll want to open a terminal window and create a directory tree for your work this semester. You could setup your directory tree using these commands: cd mkdir 3410 cd 3410 mkdir spice cd spice mkdir lab1 cd lab1 Here the cd command is used to change directories, and the mkdir command is used to create a directory. Chris Winstead SPICE 1: Tutorial January 15, 2015 3 / 28 Create a new SPICE file SPICE files (often called \decks" for historical reasons) are plain text files.
    [Show full text]
  • NGSPICE: Circuit Simulator User Guide for ECE 391
    NGSPICE: Circuit Simulator User guide for ECE 391 Last Updated: August 2015 Preface This user guide contains several page references to the ngspice re-work manual version 26. The official ngspice manual can be found at http://ngspice.sourceforge.net/ as well as older ver- sions available for download. Oregon State University i Acknowledgments Oregon State University ii Contents Preface i Acknowledgments ii 1 Introduction 1 2 How to Install Ngspice 1 2.1 Mac OS X . .1 2.2 Linux Distros . .2 2.3 Windows . .3 2.4 Alternative Method - remotely (PuTTY) . .3 3 How to Run Ngspice 3 3.1 Using PuTTY . .3 3.2 Using Windows . .4 4 Ngspice Overview 5 4.1 Getting Started . .5 4.2 Creating a Netlist . .6 4.3 Creating Circuit Elements . .7 5 Transmissions Lines 10 5.1 Transmission Line (lossless) . 10 5.1.1 Voltage Sources . 10 5.1.2 Creating a Transmission Line . 11 5.2 Transmission Lines (lossy) . 14 6 Subcircuits 16 6.1 Creating a Subcircuit . 17 7 AC - Standing Waves 21 7.1 Standing Wave Examples . 21 7.2 Standing Wave plots . 22 Ngspice User Guide - ECE 391 1 Introduction This ngspice user guide has been developed for the ECE 391 course at Oregon State University to assist students to further their understanding on the behavior of transmission lines. This guide covers the basic concepts to using ngspice to simulate ideal (lossless) and non-ideal (lossy) trans- mission lines in DC/AC circuits and other related topics discussed in the course. This user guide summarizes the useful, pertinent information from the near 600 page ngspice manual needed to run the ngspice simulator for this course, while adding several extra examples.
    [Show full text]
  • Scientific Tools for Linux
    Scientific Tools for Linux Ryan Curtin LUG@GT Ryan Curtin Getting your system to boot with initrd and initramfs - p. 1/41 Goals » Goals This presentation is intended to introduce you to the vast array Mathematical Tools of software available for scientific applications that run on Electrical Engineering Tools Linux. Software is available for electrical engineering, Chemistry Tools mathematics, chemistry, physics, biology, and other fields. Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 2/41 Non-Free Mathematical Tools » Goals MATLAB (MathWorks) Mathematical Tools » Non-Free Mathematical Tools » MATLAB » Mathematica Mathematica (Wolfram Research) » Maple » Free Mathematical Tools » GNU Octave » mathomatic Maple (Maplesoft) »R » SAGE Electrical Engineering Tools S-Plus (Mathsoft) Chemistry Tools Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 3/41 MATLAB » Goals MATLAB is a fully functional mathematics language Mathematical Tools » Non-Free Mathematical Tools You may be familiar with it from use in classes » MATLAB » Mathematica » Maple » Free Mathematical Tools » GNU Octave » mathomatic »R » SAGE Electrical Engineering Tools Chemistry Tools Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 4/41 Mathematica » Goals Worksheet-based mathematics suite Mathematical Tools » Non-Free Mathematical Tools Linux versions can be buggy and bugfixes can be slow » MATLAB
    [Show full text]
  • Ngspice User's Manual (Version 32)
    Ngspice User’s Manual Version 32 (Describes ngspice release version) Holger Vogt, Marcel Hendrix, Paolo Nenzi May 2nd, 2020 2 Locations The project and download pages of ngspice may be found at Ngspice home page http://ngspice.sourceforge.net/ Project page at SourceForge http://sourceforge.net/projects/ngspice/ Download page at SourceForge http://sourceforge.net/projects/ngspice/files/ Git source download http://sourceforge.net/scm/?type=cvs&group_id=38962 Status This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely needed. You are invited to report bugs, missing items, wrongly described items, bad English style, etc. How to use this Manual The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice- 24 as manual version 24. If its name contains ‘Version xxplus’, it describes the actual code status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual is intended to provide a complete description of ngspice’s functionality, features, commands, and procedures. This manual is not a book about learning SPICE usage, however the novice user may find some hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or the actual Git source code, which you may find on the ngspice web pages. If you are running a specific Linux distribution, you may check if it provides ngspice as part of the package.
    [Show full text]
  • Ngspice User Manual
    Ngspice User’s Manual Version 35 plus (ngspice development version) Holger Vogt, Marcel Hendrix, Paolo Nenzi, Dietmar Warning September 27, 2021 2 Locations The project and download pages of ngspice may be found at Ngspice home page http://ngspice.sourceforge.net/ Project page at SourceForge http://sourceforge.net/projects/ngspice/ Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice- rework/ Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/ Status This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely needed. You are invited to report bugs, missing items, wrongly described items, bad English style, etc. How to use this Manual The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice-35 as manual version 35. If its name contains ‘Version xxplus’, it describes the actual code status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual is intended to provide a complete description of ngspice’s functionality, features, commands, and procedures. This manual is not a book about learning SPICE usage, however the novice user may find some hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or the actual Git source code, which you may find on the ngspice web pages. If you are running a specific Linux distribution, you may check if it provides ngspice as part of the package.
    [Show full text]
  • II. PSPICE Tutorial
    II. PSPICE Tutorial PSpice is a software tool for Spice simulation. This tutorial covers the use of OrCAD EE PSpice software package, i.e., Orcad Capture and PSpice Lite. You can download a student version of Orcad from http://www.orcad.com/buy/orcad-educational-program. The tutorial will cover few examples in increasing degree of difficulty. The examples will cover many details of SPICE. Example I Q-Point Analysis In this example we will construct a simple resistive circuit and measure the currents in, and voltages across, the different resistors. Start All Programs à cadence àOrCAD 16.6 Lite à OrCAD capture CIS Lite You will be prompted with an error message saying License was not found. Would you like to launch the lite version Click “Yes”. You can check don’t ask me again if you do not want to be bothered again. OrCAD capture CIS Lite windows appears Click on the project New in the getting started window, or File à New à Project. The new project windows appear Choose Analog or Mixed A/D Browse to the appropriate directory location, and name the project MySimpleCircuit Then OK. Create PSpice Project Window appears, choose “Create a blank project”, then OK. The following screen appears Expand mysimplecircuit.dsn then expand schematic and double click on page 1 Place part Place wire Select Place part Place wire Place net alias Place ground You will get the schematic page, with a ground node in it and text to tell you to copy and paste the ground in your design. Every circuit must contain a ground and the name of the node is “0” that is the number zero.
    [Show full text]
  • What Does It Take to Accelerate SPICE on the GPU? | GTC 2013
    What Does It Take to Accelerate SPICE on the GPU? M. Naumov, F. Lannutti, S. Chetlur, L.S. Chien and P. Vandermersch What is SPICE? . Simulation Program with Integrated Circuit Emphasis — First version was developed by Laurence Nagel in 1973 — http://en.wikipedia.org/wiki/SPICE . There exist many variations (not limited to) — Academic: ngspice, spice3 (UC – Berkeley), XSPICE (GeorgiaTech) — Industrial: HSPICE (Synopsys), Pspice (Cadence), Eldo (Mentor), EEsof (Agilent) What does SPICE do? Circuit (diagram): R R 1 1 2 3 3 R2 R4 Ixs Vs What does SPICE do? Circuit (diagram): Netlist (text file): nodes i j R R 1 1 2 3 3 R1 1 2 1k R2 2 0 1k R2 R4 Ixs Vs R3 2 3 0.4k R4 3 0 0.1k V1 1 0 PWL (0 0 1n 0 1.1n 5 2n 5) What does SPICE do? Circuit (diagram): Netlist (text file): nodes i j R R 1 1 2 3 3 R1 1 2 1k R2 2 0 1k R2 R4 Ixs Vs R3 2 3 0.4k R4 3 0 0.1k V1 1 0 PWL (0 0 1n 0 1.1n 5 2n 5) Physics (Kirchhoff + Ohms + ...): Resistor Stamp Voltage Source Stamp Sparse Matrix RHS Sparse Matrix RHS col col V V I V V I row i j xs row i j xs i 1/R -1/R i 1 j -1/R 1/R j -1 xs xs 1 -1 Vs What does SPICE do? Circuit (diagram): Netlist (text file): nodes i j R R 1 1 2 3 3 R1 1 2 1k R2 2 0 1k R2 R4 Ixs Vs R3 2 3 0.4k R4 3 0 0.1k V1 1 0 PWL (0 0 1n 0 1.1n 5 2n 5) Linear system (sparse): Physics (Kirchhoff + Ohms + ...): Resistor Stamp Voltage Source Stamp node 1 -1/R -1 Sparse Matrix RHS Sparse Matrix RHS 1/R1 1 V1 col col V V I node 2 (1/R +1/R +1/R ) Vi Vj Ixs i j xs -1/R1 1 2 3 -1/R3 V2 row row node 3 i 1/R -1/R i 1 -1/R3 (1/R3+1/R4) V3 source j -1/R 1/R j -1 1 Ixs Vs xs xs 1 -1 Vs SPICE Details .
    [Show full text]
  • Hardware Description Language Modelling and Synthesis of Superconducting Digital Circuits
    Hardware Description Language Modelling and Synthesis of Superconducting Digital Circuits Nicasio Maguu Muchuka Dissertation presented for the Degree of Doctor of Philosophy in the Faculty of Engineering, at Stellenbosch University Supervisor: Prof. Coenrad J. Fourie March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: N. M. Muchuka Date: March 2017 Copyright © 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Acknowledgements I would like to thank all the people who gave me assistance of any kind during the period of my study. ii Stellenbosch University https://scholar.sun.ac.za Abstract The energy demands and computational speed in high performance computers threatens the smooth transition from petascale to exascale systems. Miniaturization has been the art used in CMOS (complementary metal oxide semiconductor) for decades, to handle these energy and speed issues, however the technology is facing physical constraints. Superconducting circuit technology is a suitable candidate for beyond CMOS technologies, but faces challenges on its design tools and design automation. In this study, methods to model single flux quantum (SFQ) based circuit using hardware description languages (HDL) are implemented and thereafter a synthesis method for Rapid SFQ circuits is carried out.
    [Show full text]
  • XSCHEM PDF Manual
    XSCHEM 0.29 Manual and Tutorials XSCHEM : schematic capture and netlisting EDA tool Xschem is a schematic capture program, it allows creation of hierarchical representation of circuits with a top down approach . By focusing on interfaces, hierarchy and instance properties a complex system can be described in terms of simpler building blocks. A VHDL or Verilog or Spice netlist can be generated from the drawn schematic, allowing the simulation of the circuit. Key feature of the program is its drawing engine written in C and using directly the Xlib drawing primitives; this gives very good speed performance, even on very big circuits. The user interface is built with the Tcl-Tk toolkit, tcl is also the extension language used. Features hierarchical schematic drawings, no limits on size any object in the schematic can have any sort of properties (generics in VHDL, parameters in Spice or Verilog) new Spice/Verilog primitives can be created, and the netlist format can be defined by the user tcl extension language allows the creation of scripts; any user command in the drawing window has an associated tcl comand VHDL / Verilog / Spice netlist, ready for simulation Behavioral VHDL / Verilog code can be embedded as one of the properties of the schematic block, Xschem runs on UNIX systems with X11 and Tcl-Tk toolkit installed. Documentation XSCHEM manual Download Current release Old XSCHEM releases on Sourceforge SVN: svn checkout svn://repo.hu/xschem/trunk License 1 XSCHEM 0.29 Manual and Tutorials The software is released under the GNU GPL,
    [Show full text]
  • Intel's Core 2 Family
    Intel’s Core 2 family - TOCK lines Kaby Lake to Coffee Lake Dezső Sima Vers. 3.1 October 2018 Contents (1) • 1. Introduction • 2. The Core 2 line • 3. The Nehalem line • 4. The Sandy Bridge line • 5. The Haswell line • 6. The Skylake line • 7. The Kaby Lake line • 8. The Kaby Lake Refresh line • 9. The Coffee Lake line • 10. The Coffee Lake line Refresh Contents (2) • 11. The Cannon Lake line (outlook) • 12. References 7. The Kaby Lake line • 7.1 Introduction to the Kaby Lake line • 7.2 Major enhancements of the Kaby Lake line • 7.3 Major innovation of the Kaby Lake line: The Optane memory • 7.4 Kaby Lake-based processor lines 7.1 Introduction to the Kaby Lake line 7.1 Introduction to the Kaby Lake line (1) 7.1 Introduction to the Kaby Lake line • The 7th generation Kaby Lake line is actually a Skylake refresh line (Tock line) manufactured on 14 nm technology. • Note that Intel designates it as a new generation in contrast to the Devil’s Cannon models that were similar optimizations then of the Haswell (4. generation) line. 22 nm 14 nm Ivy Bridge Haswell Broadwell Skylake Kaby Lake 3. gen. 4. gen 5. gen. 6. gen. 7. gen. Figure: Enhancing the Tick-Tock model with an optimization phase [225] • It is important to note that with the 14 nm technology the cadence of Intel’s technology transitions slowed down to about 2.5 years, as Kranich, Intel’s CEO stated at Intel’s Q2 2015 Investor's conference call (07/2015).
    [Show full text]