Free Circuit Simulator-Circuit Design and Simulation Software List Top Ten:Circuit Simulators Top Ten:Circuit Simulators | Mixed-Signal Electronics Circuit [...]

Total Page:16

File Type:pdf, Size:1020Kb

Free Circuit Simulator-Circuit Design and Simulation Software List Top Ten:Circuit Simulators Top Ten:Circuit Simulators | Mixed-Signal Electronics Circuit [...] Home Forums Datasheets Lab Manual Testing Components Buy Project Kits Custom Search jojo November - 6 - 2011 31 Comments Hello friends, I hope you all got benefited with our previous article on Electronic circuit drawing softwares . Today we are bringing you a great collection of circuit simulators – which are at the same time can be used for circuit drawing, circuit design and analysis as well. The list is well structured as free circuit simulation softwares, open source circuit analysis and simulation software, simple and easy to use simulators, linux based simulator, windows based simulator etc. Finally after researching through all the list we have compiled a collection best circuit simulation softwares as well. So lets start our journey right below. Free and Open source circuit simulator software list:- 1 of 13 NgSpice – one of the popular and widely used free, open source circuit simulator from Sourceforge. NgSpice is developed by a collective effort from its users and its code is based on 3 open source software packages:- known as:- Spice3f5 , Cider and Xspice. Ngspice is a part of gEDA project which is growing every day with suggestions from its users, development from its contributors, fixing bugs and approaching perfection. As its a collaborative project you can suggest improvement of the circuit simulator and be a part of the development team. GnuCap - is another open source project, developed as a general purpose circuit simulator. Known widely as GNU Circuit analysis package, this linux based circuit simulator performs various circuit analysis functions as dc and transient analysis, ac analysis etc. Developers have incorporated spice compatible model for MOSFET, BJT and Diode. CircuitLogix - this student version software from CircuitLogix enables you to perform analog, digital and mixed mode circuit analysis and simulation. This SPICE simulation software provides 4000 devices on its student version which is 1/3 of the pro version. This circuit building software give access to switches, linear IC and digital IC, FET, Transistors, relays, displays, signal generators, SCR’s, opto isolators, photo diodes, semiconductors, motors etc. LTSpice – is a widely popular SPICE simulator from Linear. LTspice is a free circuit simulation tool from Linear Technology corporation. This simulation software is considered as one of the best freeware available. Highlight of LTspice is much fast simulation of switching regulators with enhanced SPICE (compared to normal SPICE simulators).LTspice gives access to over 200 op amp models, transistor models, MOSFET models etc. A high disadvantage of LTspice is its proprietary code base which is licensed by Linear Technology. Had they made it open source, LTspice could have gone places with collaborative development. Note: LTSpice is considered as the BEST circuit simulation software available by users. MultiSim – is a student version circuit simulation software from National instruments. As you know, student versions always comes with limited access. Still this is a great simulation tool for beginners in electronics. MultiSim, the circuit maker software enables you to capture circuits, create layouts, analyse circuits and simulation. Highlight features include exploring breadboard in 3D before lab assignment submission, create printed circuit boards (PCB) etc. Breadboard simulation is possible with Multisim circuit simulator. TopSpice - this is a demo version circuit simulator from Penzar. This electronic simulation tool is tailored to work with Windows only and its is compatible for Windows XP/Vista/7. TopSpice is a mixed mode mixed signal digital,analog, behavioral simulation software. It offers both Pspice and Hspice compatible simulation of circuits. Circuit Simulator 1.5j - is a freeware circuit simulation tool. I have not used this tool or even attempted a try. I add this as a suggestion from a user in our forum. I think this is just basic tool with very basic functions, created for starter purpose. Use at your own risk. MacSpice - is a free circuit simulation software for Apple Macintosh users. This circuit simulation which is compatible for PowerPC and Intel architecture Apple Macintosh (MAC pc) computers is derived from Berkeley Spice 3f5 . This breadboard simulator can perform simulation ranging from a single resistor to an integrated circuit with thousands of devices and components packed together. 5Spice – is a free analog circuit analysis and simulator with many great features which includes a user expandable library of Spice/Pspice models, save any number of analysis results, integrated graphing of simulation results, student level MOSFET IC design etc. The focus is emphasized on analog circuit analysis and design at component level. 5Spice is mainly designed for students and educators, rather than industry professionals. Latest version of 5spice is released on October 31st 2001 – v 1.65. Beige Bag - is a demo version of the original paid version of Beige Bag circuit simulation software. Developed based on B2 Spice, this software is mixed mode, power packed, fast and easy to use. Well try the demo version before you decide to buy. Micro-Cap 10 - is another demo version circuit analyzer and simulator from Spectrum Soft. As they claim its a mixed mode digital/analog circuit simulator with an intuitive user interface, fast simulation and great performance. I haven’t 2 of 13 tried this yet, so if you are interested try your own. PECS - is a free power electronics circuit simulator created by Richard Tymerski. You can download the various manuals and tutorials from the website before start using the simulation tool. Proteus - Prospice is a mixed mode, Spice based simulation tool from LabCenter. They have two versions, basic and advanced. Basic version is free which supports interactive simulation only while advanced supports a range of useful functions and features like graph based analysis which includes frequency, noise, distortion, fourier parameters etc. QUCS - Quite Universal Circuit Simulator is a free simulation software developed on GNU/Linux environment. Well this software really works on other operating systems such as Solaris, Apple Macintosh, Microsoft windows, FreeBSD, NetBSD etc. User can simulate large signal, small signal and noise behavior of the circuit using this simple circuit simulator. Solve Elec - is an electrical circuit simulator (free version) which is developed for Macintosh OS and Windows. It enables users to draw and analyse circuits (both electrical and electronic) functioning in direct current or alternating current, get formulas, verify equations, get equivalent circuits etc. XSpice - is developed as an extension to Spice 3 by Georgia Institute of Technology. It has code modelling feature which enables user to add new models. Okay! So far we have listed 16 free version circuit simulators, some of which are open source, some are licensed but free, some are demo/ student versions etc. And we have atleast one simulator for each and every operating system out there in the market. If you know some other free simulation software/tool, that’s so great, please share it as comments. Now lets have a look at some enterprise circuit modelling software in the market. Best Licensed/Paid Circuit simulation software: PSPICE – is a mixed signal, industry standard circuit simulator. This software is used by many professionals for electronic system design and development. Orcad, the printed circuit board (PCB) design software is developed by the same company, Cadence. MultiSim- is a great simulation software from National Instruments for electronic design engineers, academic professionals and educators, colleges, students, universities and professionals. Highlight features of this software are written above (under free resources). SiMetrix – is a circuit simulation tool with enhanced Spice specifically developed for Professional electronic design engineers. They have other products like Simplis, Micron VX, DVM etc. TINA - is an affordable, cost effective circuit design and simulation software, yet very powerful in features and functions. You can buy a basic version of TINA design suite 9.3 for as low as 90 Euros and a classic version (suited for professional design engineers) is available from 600 Euros. PowerSim – is a simulation software developed for power electronics circuits, motor control and other requirements like dynamic system simulation. Please share (as comments) if you know some other good circuit simulation software that I have not listed here. 3 of 13 You may also like: 8051 Simulator PCB Design and Layout Software Electronics circuit drawing softwares We recommend: Voltmeter using 8051 FET-Field Effect Transistors-Introduction Working of Flash Memory JFET and MOSFET comparison VOIP – an Overview Custom Search Posted in Tools and Softwares Tags: Softwares Leave a Reply Name (required) Mail (will not be published) (required) Website 4 of 13 31 Responses to “Electronic circuit design and simulation software list” Art Lahman says: February 22, 2014 at 1:42 pm Im looking to buy a program for a 8 pin relay would work in a system. I hope that I have found the right page for it, if you would please get back to me and let me know if this the right one. Thank You Art Reply Michael says: December 15, 2013 at 8:22 am hello hy is very good Reply sarah says: October 23, 2013 at 3:46 am What software did they use for the circuit simulation of the picture below, thanks in advance http://easyelectronics.weebly.com/uploads/2/1/9/2/21922620/697490_orig.png Reply Samir
Recommended publications
  • Circuit Design and Analysis Temel Elektrik Mühendisli Ği, Cilt 1 , Fitzgerald
    Course Plan Ankara University Credit: 4 ECTS Engineering Faculty Class: Lecture: 3 hours Department of Engineering Physics Problem Hours: 0 Lab: 0 PEN207 Class Hours: Monday 09:30-12:15 (3 hours) CIRCUIT DESIGN AND Classroom: Seminar Hall (Seminer Salonu) ANALYSIS Office Hours: Friday 11:00-12:00 (Circuit Theory) Attendance: Mandatory Exams: Midterm (one midterm exam) % 30 Prof. Dr. Hüseyin Sarı Final Exam % 80 Passing Grade: 60 (C3) or higher 3 Course Materials and Textbook(s) Ankara University Engineering Faculty, Lecture notes (Ppoint): Dept. of Engineering Physics huseyinsari.net.tr Desler Circuit Design & Analysis (http://huseyinsari.net.tr/ders-pen207.htm) 2019 Fall Main book: PEN207 Circuit Design and Analysis Temel Elektrik Mühendisli ği, Cilt 1 , Fitzgerald. A. E. Higginbotham D. E.,Grabel A. Instructor : Prof. Dr. Hüseyin Sarı (Editor: Prof. Dr. Kerim Kıymaç, 3.Edition) A.U. Engineering Faculty, Dept. of Eng. Physics Office: Department of Eng. Phy., B-Block, Room:105 E-mail: [email protected][email protected] web: www.huseyinsari.net.tr Phone: (312) 203 3424 (office) ● 536 295 3555 (cell) 2 4 PEN207-Circuit Design & Analysis:Introduction 1 Textbooks Textbooks-Turkish Recommended Textbooks-1: Recommended (Turkish)Textbooks-3: Introductory Electric Circuits Schaum's Outline of Basic Circuit Elektrik Devreleri Elektrik Devreleri Elektrik Devreleri-I Circuit Analysis James W. Nilsson, James W. Nilsson, (Ders Kitabı ) - Teori ve Çözümlü Robert L. Boylestad Susan Riedel Analysis, 2nd Edition John O'Malley Susan Riedel Problem Çözümleri Örnekler Pearson Int. Edition 6th Ed. Palme Yayınevi (In library) (In library) (In library) Turgut İkiz , Ali Bekir Yıldız Papatya Bilim Yayınları Volga Yayıncılık 5 7 Textbooks Textbooks-Turkish Recommended Textbooks-2: Recommended (Turkish)Textbooks-4: Introduction to Electrical Schaum's Outline of Do ğru Akım Devreleri ve Electric Circuits Engineering: 3000 Solved Problem Çözümleri Richard C.
    [Show full text]
  • Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers.
    [Show full text]
  • Elektronikentwicklung Unter Linux
    Elektronikentwicklung unter Linux Clifford Wolf Clifford Wolf, 26. September 2010 http://www.clifford.at/ - p. 1 Einführung ● Behandelte Themen ● Unvollständigkeit Schaltungssimulation Leiterplattenentwurf und Schematic Einführung Compiler und Libraries Mathematik Mechanik Clifford Wolf, 26. September 2010 http://www.clifford.at/ - p. 2 Behandelte Themen Einführung ■ Schaltungssimulation ● Behandelte Themen ● Unvollständigkeit Schaltungssimulation ■ Leiterplattenentwurf und Schematic Leiterplattenentwurf und Schematic Compiler und Libraries ■ Compiler fuer embedded CPUs und ausgewaehlte Libraries Mathematik Mechanik ■ Mathematik ■ Mechanik Clifford Wolf, 26. September 2010 http://www.clifford.at/ - p. 3 Unvollständigkeit Einführung ■ Ich kann nur etwas über die Tools erzaehlen die ich selbst ● Behandelte Themen ● Unvollständigkeit verwende. Schaltungssimulation Leiterplattenentwurf und ■ Schematic Für Hinweise und Ergänzungen bin ich jederzeit offen und Compiler und Libraries dankbar. Mathematik Mechanik Clifford Wolf, 26. September 2010 http://www.clifford.at/ - p. 4 Einführung Schaltungssimulation ● QUCS ● GnuCap ● LTspice ● Java Circuit Simulator ● Icarus Verilog ● GTKWave Schaltungssimulation Leiterplattenentwurf und Schematic Compiler und Libraries Mathematik Mechanik Clifford Wolf, 26. September 2010 http://www.clifford.at/ - p. 5 QUCS Einführung http://qucs.sourceforge.net/ Schaltungssimulation ● QUCS ● GnuCap ■ Sehr sauber implementierter Simulator ● LTspice ● Java Circuit Simulator ● Icarus Verilog ● GTKWave ■ Gute GUI für Schematic-Entry
    [Show full text]
  • SPICE 1: Tutorial
    SPICE 1: Tutorial Chris Winstead January 15, 2015 Chris Winstead SPICE 1: Tutorial January 15, 2015 1 / 28 Getting Started SPICE is designed to run as a classic console tool, aka a terminal command. If you are unfamiliar with the Linux terminal, you should spend some time to get acquainted with basic terminal commands, and how to organize and navigate directory structures (a directory is often called a \folder"). I prepared a quick-start terminal tutorial that you can review here: https://electronics.wiki.usu.edu/Linux_Tutorial If you plan to use NGSpice in the lab (which I recommend), then you may want to check out our NGSpice wiki page: https://electronics.wiki.usu.edu/NGSpice You can also find NGSpice information and the full manual here: http://ngspice.sourceforge.net/ You will also need to choose a text editor for preparing your SPICE files. I like to use Emacs (it has an optional SPICE mode that is pretty handy). Most students prefer to use GEdit. You can launch these editors from the terminal. Chris Winstead SPICE 1: Tutorial January 15, 2015 2 / 28 Creating a Project First, you'll want to open a terminal window and create a directory tree for your work this semester. You could setup your directory tree using these commands: cd mkdir 3410 cd 3410 mkdir spice cd spice mkdir lab1 cd lab1 Here the cd command is used to change directories, and the mkdir command is used to create a directory. Chris Winstead SPICE 1: Tutorial January 15, 2015 3 / 28 Create a new SPICE file SPICE files (often called \decks" for historical reasons) are plain text files.
    [Show full text]
  • NGSPICE: Circuit Simulator User Guide for ECE 391
    NGSPICE: Circuit Simulator User guide for ECE 391 Last Updated: August 2015 Preface This user guide contains several page references to the ngspice re-work manual version 26. The official ngspice manual can be found at http://ngspice.sourceforge.net/ as well as older ver- sions available for download. Oregon State University i Acknowledgments Oregon State University ii Contents Preface i Acknowledgments ii 1 Introduction 1 2 How to Install Ngspice 1 2.1 Mac OS X . .1 2.2 Linux Distros . .2 2.3 Windows . .3 2.4 Alternative Method - remotely (PuTTY) . .3 3 How to Run Ngspice 3 3.1 Using PuTTY . .3 3.2 Using Windows . .4 4 Ngspice Overview 5 4.1 Getting Started . .5 4.2 Creating a Netlist . .6 4.3 Creating Circuit Elements . .7 5 Transmissions Lines 10 5.1 Transmission Line (lossless) . 10 5.1.1 Voltage Sources . 10 5.1.2 Creating a Transmission Line . 11 5.2 Transmission Lines (lossy) . 14 6 Subcircuits 16 6.1 Creating a Subcircuit . 17 7 AC - Standing Waves 21 7.1 Standing Wave Examples . 21 7.2 Standing Wave plots . 22 Ngspice User Guide - ECE 391 1 Introduction This ngspice user guide has been developed for the ECE 391 course at Oregon State University to assist students to further their understanding on the behavior of transmission lines. This guide covers the basic concepts to using ngspice to simulate ideal (lossless) and non-ideal (lossy) trans- mission lines in DC/AC circuits and other related topics discussed in the course. This user guide summarizes the useful, pertinent information from the near 600 page ngspice manual needed to run the ngspice simulator for this course, while adding several extra examples.
    [Show full text]
  • Circuit Optimisation Using Device Layout Motifs
    Circuit Optimisation using Device Layout Motifs Yang Xiao Ph.D. University of York Electronics July 2015 Abstract Circuit designers face great challenges as CMOS devices continue to scale to nano dimensions, in particular, stochastic variability caused by the physical properties of transistors. Stochas- tic variability is an undesired and uncertain component caused by fundamental phenomena associated with device structure evolution, which cannot be avoided during the manufac- turing process. In order to examine the problem of variability at atomic levels, the `Motif ' concept, defined as a set of repeating patterns of fundamental geometrical forms used as design units, is proposed to capture the presence of statistical variability and improve the device/circuit layout regularity. A set of 3D motifs with stochastic variability are investigated and performed by technology computer aided design simulations. The statistical motifs compact model is used to bridge between device technology and circuit design. The statistical variability information is transferred into motifs' compact model in order to facilitate variation-aware circuit designs. The uniform motif compact model extraction is performed by a novel two-step evolutionary algorithm. The proposed extraction method overcomes the drawbacks of conventional extraction methods of poor convergence without good initial conditions and the difficulty of simulating multi-objective optimisations. After uniform motif compact models are obtained, the statistical variability information is injected into these compact models to generate the final motif statistical variability model. The thesis also considers the influence of different choices of motif for each device on cir- cuit performance and its statistical variability characteristics. A set of basic logic gates is constructed using different motif choices.
    [Show full text]
  • Simulation Modeling with SIMUL8 / Kieran Concannon
    Simulation Modeling with Kieran Concannon Mark Elder Kim Hindle Jillian Tremble Stanley Tse Produced by: Simulation Solutions Copyright Visual Thinking International, 2007 Cover Design Jo-Dee Burbach Tuling This book was produced by Visual8 Corporation and printed and bound by e- impressions Inc. First published 2004 Copyright © Visual Thinking International. All rights reserved. This edition published 2007 Copyright © Visual Thinking International No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, without the prior written permission of Visual Thinking International, telephone 1-800-878-3373, email [email protected]. All trademarks are the property of their respective companies. Document Edition 4.1 Date September 2007 SIMUL8 Software Version 14.0 ISBN 0-9734285-0-3 Printed in Canada. National Library of Canada Cataloguing in Publication Simulation modeling with SIMUL8 / Kieran Concannon ... [et al.]. Includes index. ISBN 0-9734285-0-3 1. SIMUL8. 2. Computer simulation--Computer programs. I. Concannon, Kieran, 1951- QA76.9.C65S45 2003 003'.353 C2003-907459-5 About the Authors and Contributors Simulation Modeling with SIMUL8 • 1 About the Authors and Contributors Authors Kieran Concannon With a Masters in Operations Research from Birmingham University, Kieran has been developing computer simulations for over 25 years. He has played a vital role in establishing the use of simulation in production planning and execution and has been influential in the development of SIMUL8. Kieran founded and is currently the President of Visual8 Corporation, the preeminent consulting, training, and support group for SIMUL8 in North America.
    [Show full text]
  • Scientific Tools for Linux
    Scientific Tools for Linux Ryan Curtin LUG@GT Ryan Curtin Getting your system to boot with initrd and initramfs - p. 1/41 Goals » Goals This presentation is intended to introduce you to the vast array Mathematical Tools of software available for scientific applications that run on Electrical Engineering Tools Linux. Software is available for electrical engineering, Chemistry Tools mathematics, chemistry, physics, biology, and other fields. Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 2/41 Non-Free Mathematical Tools » Goals MATLAB (MathWorks) Mathematical Tools » Non-Free Mathematical Tools » MATLAB » Mathematica Mathematica (Wolfram Research) » Maple » Free Mathematical Tools » GNU Octave » mathomatic Maple (Maplesoft) »R » SAGE Electrical Engineering Tools S-Plus (Mathsoft) Chemistry Tools Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 3/41 MATLAB » Goals MATLAB is a fully functional mathematics language Mathematical Tools » Non-Free Mathematical Tools You may be familiar with it from use in classes » MATLAB » Mathematica » Maple » Free Mathematical Tools » GNU Octave » mathomatic »R » SAGE Electrical Engineering Tools Chemistry Tools Physics Tools Other Tools Questions? Ryan Curtin Getting your system to boot with initrd and initramfs - p. 4/41 Mathematica » Goals Worksheet-based mathematics suite Mathematical Tools » Non-Free Mathematical Tools Linux versions can be buggy and bugfixes can be slow » MATLAB
    [Show full text]
  • Ecebuntu - an Innovative and Multi-Purpose Educational Operating System for Electrical and Computer Engineering Undergraduate Courses
    RESEARCH ARTICLE Electrica 2018; 18(2): 210-217 ECEbuntu - An Innovative and Multi-Purpose Educational Operating System for Electrical and Computer Engineering Undergraduate Courses Bilal Wajid1 , Ali Rıza Ekti2 , Mustafa Kamal AlShawaqfeh3 1Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan 2Department of Electrical-Electronics Engineering, Balıkesir University School of Engineering, Balıkesir, Turkey 3School of Electrical Engineering and Information Technology, German Jordanian University, Amman, Jordan Cite this article as: B. Wajid, A. R. Ekti, M. K. AlShawaqfeh, “ECEbuntu - An Innovative and Multi-Purpose Educational Operating System for Electrical and Computer Engineering Undergraduate Courses”, Electrica, vol. 18, no: 2, pp. 210-217, 2018. ABSTRACT ECEbuntu is a free, easily distributable, customized operating system based on Ubuntu 12.04 long term support (LTS) designed for electrical/electronic and computer engineering (ECE) students. ECEbuntu is aimed at universities and students as it represents a cohesive environment integrating more than 30 pre-installed software and packages all catering to undergraduate coursework offered in ECE and Computer Science (CS) programs. ECEbuntu supports a wide range of tools for programming, circuit analysis, printed circuit board design, mathematical and numerical analysis, network analysis, and RF and microwave transmitter design. ECEbuntu is free and effective alternative to the existing costly and copyrighted software packages. ECEbuntu attempts
    [Show full text]
  • Ngspice User's Manual (Version 32)
    Ngspice User’s Manual Version 32 (Describes ngspice release version) Holger Vogt, Marcel Hendrix, Paolo Nenzi May 2nd, 2020 2 Locations The project and download pages of ngspice may be found at Ngspice home page http://ngspice.sourceforge.net/ Project page at SourceForge http://sourceforge.net/projects/ngspice/ Download page at SourceForge http://sourceforge.net/projects/ngspice/files/ Git source download http://sourceforge.net/scm/?type=cvs&group_id=38962 Status This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely needed. You are invited to report bugs, missing items, wrongly described items, bad English style, etc. How to use this Manual The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice- 24 as manual version 24. If its name contains ‘Version xxplus’, it describes the actual code status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual is intended to provide a complete description of ngspice’s functionality, features, commands, and procedures. This manual is not a book about learning SPICE usage, however the novice user may find some hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or the actual Git source code, which you may find on the ngspice web pages. If you are running a specific Linux distribution, you may check if it provides ngspice as part of the package.
    [Show full text]
  • Modern Advances in Software and Solution Algorithms for Reservoir Simulation
    MODERN ADVANCES IN SOFTWARE AND SOLUTION ALGORITHMS FOR RESERVOIR SIMULATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Rami M. Younis August 2011 © 2011 by Rami Mustafa Younis. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fb287kz3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Hamdi Tchelepi, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Khalid Aziz, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Juan Alonso Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract As conventional hydrocarbon resources dwindle, and environmentally-driven markets start to form and mature, investments are expected to shift into the development of novel emerging subsurface process technologies.
    [Show full text]
  • Ngspice User Manual
    Ngspice User’s Manual Version 35 plus (ngspice development version) Holger Vogt, Marcel Hendrix, Paolo Nenzi, Dietmar Warning September 27, 2021 2 Locations The project and download pages of ngspice may be found at Ngspice home page http://ngspice.sourceforge.net/ Project page at SourceForge http://sourceforge.net/projects/ngspice/ Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice- rework/ Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/ Status This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely needed. You are invited to report bugs, missing items, wrongly described items, bad English style, etc. How to use this Manual The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice-35 as manual version 35. If its name contains ‘Version xxplus’, it describes the actual code status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual is intended to provide a complete description of ngspice’s functionality, features, commands, and procedures. This manual is not a book about learning SPICE usage, however the novice user may find some hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or the actual Git source code, which you may find on the ngspice web pages. If you are running a specific Linux distribution, you may check if it provides ngspice as part of the package.
    [Show full text]