Hangul, the Korean Script 'The World's Best' Alphabet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Reference Manual for the Standardization of Geographical Names United Nations Group of Experts on Geographical Names
ST/ESA/STAT/SER.M/87 Department of Economic and Social Affairs Statistics Division Technical reference manual for the standardization of geographical names United Nations Group of Experts on Geographical Names United Nations New York, 2007 The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which Member States of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. NOTE The designations employed and the presentation of material in the present publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The term “country” as used in the text of this publication also refers, as appropriate, to territories or areas. Symbols of United Nations documents are composed of capital letters combined with figures. ST/ESA/STAT/SER.M/87 UNITED NATIONS PUBLICATION Sales No. -
Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging
ORIGINAL ARTICLE Neuroscience http://dx.doi.org/10.3346/jkms.2014.29.10.1416 • J Korean Med Sci 2014; 29: 1416-1424 Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging Zang-Hee Cho,1 Nambeom Kim,1 The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Sungbong Bae,2 Je-Geun Chi,1 Korean character) and Hangul (the more newer Korean alphabet), have been used together Chan-Woong Park,1 Seiji Ogawa,1,3 since the 14th century. While Hanja character has its own morphemic base, Hangul being and Young-Bo Kim1 purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these 1Neuroscience Research Institute, Gachon University, Incheon, Korea; 2Department of linguistic differences between Hanja and Hangul, we have launched two studies; first was Psychology, Yeungnam University, Kyongsan, Korea; to find differences in cortical activation when it is stimulated by Hanja and Hangul reading 3Kansei Fukushi Research Institute, Tohoku Fukushi to support the much discussed dual-route hypothesis of logographic and phonological University, Sendai, Japan routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Received: 14 February 2014 Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the Accepted: 5 July 2014 effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) Address for Correspondence: (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are Young-Bo Kim, MD Department of Neuroscience and Neurosurgery, Gachon activated by Hanja reading compared to Hangul reading. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
Recognition of Online Handwritten Gurmukhi Strokes Using Support Vector Machine a Thesis
Recognition of Online Handwritten Gurmukhi Strokes using Support Vector Machine A Thesis Submitted in partial fulfillment of the requirements for the award of the degree of Master of Technology Submitted by Rahul Agrawal (Roll No. 601003022) Under the supervision of Dr. R. K. Sharma Professor School of Mathematics and Computer Applications Thapar University Patiala School of Mathematics and Computer Applications Thapar University Patiala – 147004 (Punjab), INDIA June 2012 (i) ABSTRACT Pen-based interfaces are becoming more and more popular and play an important role in human-computer interaction. This popularity of such interfaces has created interest of lot of researchers in online handwriting recognition. Online handwriting recognition contains both temporal stroke information and spatial shape information. Online handwriting recognition systems are expected to exhibit better performance than offline handwriting recognition systems. Our research work presented in this thesis is to recognize strokes written in Gurmukhi script using Support Vector Machine (SVM). The system developed here is a writer independent system. First chapter of this thesis report consist of a brief introduction to handwriting recognition system and some basic differences between offline and online handwriting systems. It also includes various issues that one can face during development during online handwriting recognition systems. A brief introduction about Gurmukhi script has also been given in this chapter In the last section detailed literature survey starting from the 1979 has also been given. Second chapter gives detailed information about stroke capturing, preprocessing of stroke and feature extraction. These phases are considered to be backbone of any online handwriting recognition system. Recognition techniques that have been used in this study are discussed in chapter three. -
Arabic Alphabet - Wikipedia, the Free Encyclopedia Arabic Alphabet from Wikipedia, the Free Encyclopedia
2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia Arabic alphabet From Wikipedia, the free encyclopedia َأﺑْ َﺠ ِﺪﯾﱠﺔ َﻋ َﺮﺑِﯿﱠﺔ :The Arabic alphabet (Arabic ’abjadiyyah ‘arabiyyah) or Arabic abjad is Arabic abjad the Arabic script as it is codified for writing the Arabic language. It is written from right to left, in a cursive style, and includes 28 letters. Because letters usually[1] stand for consonants, it is classified as an abjad. Type Abjad Languages Arabic Time 400 to the present period Parent Proto-Sinaitic systems Phoenician Aramaic Syriac Nabataean Arabic abjad Child N'Ko alphabet systems ISO 15924 Arab, 160 Direction Right-to-left Unicode Arabic alias Unicode U+0600 to U+06FF range (http://www.unicode.org/charts/PDF/U0600.pdf) U+0750 to U+077F (http://www.unicode.org/charts/PDF/U0750.pdf) U+08A0 to U+08FF (http://www.unicode.org/charts/PDF/U08A0.pdf) U+FB50 to U+FDFF (http://www.unicode.org/charts/PDF/UFB50.pdf) U+FE70 to U+FEFF (http://www.unicode.org/charts/PDF/UFE70.pdf) U+1EE00 to U+1EEFF (http://www.unicode.org/charts/PDF/U1EE00.pdf) Note: This page may contain IPA phonetic symbols. Arabic alphabet ا ب ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع en.wikipedia.org/wiki/Arabic_alphabet 1/20 2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia غ ف ق ك ل م ن ه و ي History · Transliteration ء Diacritics · Hamza Numerals · Numeration V · T · E (//en.wikipedia.org/w/index.php?title=Template:Arabic_alphabet&action=edit) Contents 1 Consonants 1.1 Alphabetical order 1.2 Letter forms 1.2.1 Table of basic letters 1.2.2 Further notes -
+ Natali A, Professor of Cartqraphy, the Hebreu Uhiversity of -Msalem, Israel DICTIONARY of Toponymfc TERLMINO~OGY Wtaibynafiail~
United Nations Group of E%perts OR Working Paper 4eographicalNames No. 61 Eighteenth Session Geneva, u-23 August1996 Item7 of the E%ovisfonal Agenda REPORTSOF THE WORKINGGROUPS + Natali a, Professor of Cartqraphy, The Hebreu UhiVersity of -msalem, Israel DICTIONARY OF TOPONYMfC TERLMINO~OGY WtaIbyNafiaIl~- . PART I:RaLsx vbim 3.0 upi8elfuiyl9!J6 . 001 . 002 003 004 oo!l 006 007 . ooa 009 010 . ol3 014 015 sequala~esfocJphabedcsaipt. 016 putting into dphabetic order. see dso Kqucna ruIt!% Qphabctk 017 Rtlpreat8Ii00, e.g. ia 8 computer, wflich employs ooc only numm ds but also fetters. Ia a wider sense. aIso anploying punauatiocl tnarksmd-SymboIs. 018 Persod name. Esamples: Alfredi ‘Ali. 019 022 023 biliaw 024 02s seecIass.f- 026 GrqbicsymboIusedurunitiawrIdu~morespedficaty,r ppbic symbol in 1 non-dphabedc writiog ryste.n& Exmlptes: Chinese ct, , thong; Ambaric u , ha: Japaoese Hiragana Q) , no. 027 -.modiGed Wnprehauive term for cheater. simplified aad character, varIaoL 031 CbmJnyol 032 CISS, featm? 033 cQdedrepfwltatiul 034 035 036 037' 038 039 040 041 042 047 caavasion alphabet 048 ConMQo table* 049 0nevahte0frpointinlhisgr8ti~ . -.- w%idofplaaecoordiaarurnm;aingoftwosetsofsnpight~ -* rtcight8ngfIertoeachotkrodwithap8ltKliuofl8qthonbo&. rupenmposedonr(chieflytopogtaphtc)map.see8lsouTM gz 051 see axxdimtes. rectangufar. 052 A stahle form of speech, deriyed from a pbfgin, which has became the sole a ptincipal language of 8 qxech comtnunity. Example: Haitian awle (derived from Fresh). ‘053 adllRaIfeatlue see feature, allhlral. 054 055 * 056 057 Ac&uioaofsoftwamrcqkdfocusingrdgRaIdatabmem rstoauMe~osctlto~thisdatabase. 058 ckalog of defItitioas of lbe contmuofadigitaldatabase.~ud- hlg data element cefw labels. f0mw.s. internal refm codMndtextemty,~well~their-p,. 059 see&tadichlq. 060 DeMptioa of 8 basic unit of -Lkatifiile md defiile informatioa tooccqyrspecEcdataf!eldinrcomputernxaxtLExampk Pateofmtifii~ofluwtby~namaturhority’. -
Shahmukhi to Gurmukhi Transliteration System: a Corpus Based Approach
Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach Tejinder Singh Saini1 and Gurpreet Singh Lehal2 1 Advanced Centre for Technical Development of Punjabi Language, Literature & Culture, Punjabi University, Patiala 147 002, Punjab, India [email protected] http://www.advancedcentrepunjabi.org 2 Department of Computer Science, Punjabi University, Patiala 147 002, Punjab, India [email protected] Abstract. This research paper describes a corpus based transliteration system for Punjabi language. The existence of two scripts for Punjabi language has created a script barrier between the Punjabi literature written in India and in Pakistan. This research project has developed a new system for the first time of its kind for Shahmukhi script of Punjabi language. The proposed system for Shahmukhi to Gurmukhi transliteration has been implemented with various research techniques based on language corpus. The corpus analysis program has been run on both Shahmukhi and Gurmukhi corpora for generating statistical data for different types like character, word and n-gram frequencies. This statistical analysis is used in different phases of transliteration. Potentially, all members of the substantial Punjabi community will benefit vastly from this transliteration system. 1 Introduction One of the great challenges before Information Technology is to overcome language barriers dividing the mankind so that everyone can communicate with everyone else on the planet in real time. South Asia is one of those unique parts of the world where a single language is written in different scripts. This is the case, for example, with Punjabi language spoken by tens of millions of people but written in Indian East Punjab (20 million) in Gurmukhi script (a left to right script based on Devanagari) and in Pakistani West Punjab (80 million), written in Shahmukhi script (a right to left script based on Arabic), and by a growing number of Punjabis (2 million) in the EU and the US in the Roman script. -
Proposal for a Korean Script Root Zone LGR 1 General Information
(internal doc. #: klgp220_101f_proposal_korean_lgr-25jan18-en_v103.doc) Proposal for a Korean Script Root Zone LGR LGR Version 1.0 Date: 2018-01-25 Document version: 1.03 Authors: Korean Script Generation Panel 1 General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Korean Script LGR in the XML format and the rationale behind the design decisions taken. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document below: • proposal-korean-lgr-25jan18-en.xml Labels for testing can be found in the accompanying text document below: • korean-test-labels-25jan18-en.txt In Section 3, we will see the background on Korean script (Hangul + Hanja) and principal language using it, i.e., Korean language. The overall development process and methodology will be reviewed in Section 4. The repertoire and variant groups in K-LGR will be discussed in Sections 5 and 6, respectively. In Section 7, Whole Label Evaluation Rules (WLE) will be described and then contributors for K-LGR are shown in Section 8. Several appendices are included with separate files. proposal-korean-lgr-25jan18-en 1 / 73 1/17 2 Script for which the LGR is proposed ISO 15924 Code: Kore ISO 15924 Key Number: 287 (= 286 + 500) ISO 15924 English Name: Korean (alias for Hangul + Han) Native name of the script: 한글 + 한자 Maximal Starting Repertoire (MSR) version: MSR-2 [241] Note. -
The Japanese Writing Systems, Script Reforms and the Eradication of the Kanji Writing System: Native Speakers’ Views Lovisa Österman
The Japanese writing systems, script reforms and the eradication of the Kanji writing system: native speakers’ views Lovisa Österman Lund University, Centre for Languages and Literature Bachelor’s Thesis Japanese B.A. Course (JAPK11 Spring term 2018) Supervisor: Shinichiro Ishihara Abstract This study aims to deduce what Japanese native speakers think of the Japanese writing systems, and in particular what native speakers’ opinions are concerning Kanji, the logographic writing system which consists of Chinese characters. The Japanese written language has something that most languages do not; namely a total of three writing systems. First, there is the Kana writing system, which consists of the two syllabaries: Hiragana and Katakana. The two syllabaries essentially figure the same way, but are used for different purposes. Secondly, there is the Rōmaji writing system, which is Japanese written using latin letters. And finally, there is the Kanji writing system. Learning this is often at first an exhausting task, because not only must one learn the two phonematic writing systems (Hiragana and Katakana), but to be able to properly read and write in Japanese, one should also learn how to read and write a great amount of logographic signs; namely the Kanji. For example, to be able to read and understand books or newspaper without using any aiding tools such as dictionaries, one would need to have learned the 2136 Jōyō Kanji (regular-use Chinese characters). With the twentieth century’s progress in technology, comparing with twenty years ago, in this day and age one could probably theoretically get by alright without knowing how to write Kanji by hand, seeing as we are writing less and less by hand and more by technological devices. -
Scripts, Languages, and Authority Control Joan M
49(4) LRTS 243 Scripts, Languages, and Authority Control Joan M. Aliprand Library vendors’ use of Unicode is leading to library systems with multiscript capability, which offers the prospect of multiscript authority records. Although librarians tend to focus on Unicode in relation to non-Roman scripts, language is a more important feature of authority records than script. The concept of a catalog “locale” (of which language is one aspect) is introduced. Restrictions on the structure and content of a MARC 21 authority record are outlined, and the alternative structures for authority records containing languages written in non- Roman scripts are described. he Unicode Standard is the universal encoding standard for all the charac- Tters used in writing the world’s languages.1 The availability of library systems based on Unicode offers the prospect of library records not only in all languages but also in all the scripts that a particular system supports. While such a system will be used primarily to create and provide access to bibliographic records in their actual scripts, it can also be used to create authority records for the library, perhaps for contribution to communal authority files. A number of general design issues apply to authority records in multiple languages and scripts, design issues that affect not just the key hubs of communal authority files, but any institution or organization involved with authority control. Multiple scripts in library systems became available in the 1980s in the Research Libraries Information Network (RLIN) with the addition of Chinese, Japanese, and Korean (CJK) capability, and in ALEPH (Israel’s research library network), which initially provided Latin and Hebrew scripts and later Arabic, Cyrillic, and Greek.2 The Library of Congress continued to produce catalog cards for material in the JACKPHY (Japanese, Arabic, Chinese, Korean, Persian, Hebrew, and Yiddish) languages until all of the scripts used to write these languages were supported by an automated system. -
Contribution to the UN Secretary-General's 2018 Report
COMMISSION ON SCIENCE AND TECHNOLOGY FOR DEVELOPMENT (CSTD) Twenty-second session Geneva, 13 to 17 May 2019 Submissions from entities in the United Nations system and elsewhere on their efforts in 2018 to implement the outcome of the WSIS Submission by Internet Corporation for Assigned Names and Numbers This submission was prepared as an input to the report of the UN Secretary-General on "Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels" (to the 22nd session of the CSTD), in response to the request by the Economic and Social Council, in its resolution 2006/46, to the UN Secretary-General to inform the Commission on Science and Technology for Development on the implementation of the outcomes of the WSIS as part of his annual reporting to the Commission. DISCLAIMER: The views presented here are the contributors' and do not necessarily reflect the views and position of the United Nations or the United Nations Conference on Trade and Development. 2018 ANNUAL REPORT TO UNCTAD: ICANN CONTRIBUTION Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels Executive Summary ICANN is pleased and honoured be invited to contribute to this annual UNCTAD Report. We value our involvement with, and contribution to, the overall WSIS process and to our relationship with the UN Commission on Science and Technology for Development (CSTD). 2018 has been a busy and important year for ICANN and for the Internet Governance Ecosystem in general; with the ITU Plenipotentiary taking place in Dubai and the IGF in Paris. -
Languages of New York State Is Designed As a Resource for All Education Professionals, but with Particular Consideration to Those Who Work with Bilingual1 Students
TTHE LLANGUAGES OF NNEW YYORK SSTATE:: A CUNY-NYSIEB GUIDE FOR EDUCATORS LUISANGELYN MOLINA, GRADE 9 ALEXANDER FFUNK This guide was developed by CUNY-NYSIEB, a collaborative project of the Research Institute for the Study of Language in Urban Society (RISLUS) and the Ph.D. Program in Urban Education at the Graduate Center, The City University of New York, and funded by the New York State Education Department. The guide was written under the direction of CUNY-NYSIEB's Project Director, Nelson Flores, and the Principal Investigators of the project: Ricardo Otheguy, Ofelia García and Kate Menken. For more information about CUNY-NYSIEB, visit www.cuny-nysieb.org. Published in 2012 by CUNY-NYSIEB, The Graduate Center, The City University of New York, 365 Fifth Avenue, NY, NY 10016. [email protected]. ABOUT THE AUTHOR Alexander Funk has a Bachelor of Arts in music and English from Yale University, and is a doctoral student in linguistics at the CUNY Graduate Center, where his theoretical research focuses on the semantics and syntax of a phenomenon known as ‘non-intersective modification.’ He has taught for several years in the Department of English at Hunter College and the Department of Linguistics and Communications Disorders at Queens College, and has served on the research staff for the Long-Term English Language Learner Project headed by Kate Menken, as well as on the development team for CUNY’s nascent Institute for Language Education in Transcultural Context. Prior to his graduate studies, Mr. Funk worked for nearly a decade in education: as an ESL instructor and teacher trainer in New York City, and as a gym, math and English teacher in Barcelona.