Scripts, Languages, and Authority Control Joan M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amber Billey Senylrc 4/1/2016
AMBER BILLEY SENYLRC 4/1/2016 Photo by twm1340 - Creative Commons Attribution-ShareAlike License https://www.flickr.com/photos/89093669@N00 Created with Haiku Deck Today’s slides: http://bit.ly/SENYLRC_BF About me... ● Metadata Librarian ● 10 years of cataloging and digitization experience for cultural heritage institutions ● MLIS from Pratt in 2009 ● Zepheira BIBFRAME alumna ● Curious by nature [email protected] @justbilley Photo by GBokas - Creative Commons Attribution-NonCommercial-ShareAlike License https://www.flickr.com/photos/36724091@N07 Created with Haiku Deck http://digitalgallery.nypl.org/nypldigital/id?1153322 02743cam 22004094a 45000010008000000050017000080080041000250100017000660190014000830200031000970200028001280200 03800156020003500194024001600229035002400245035003900269035001700308040005300325050002200378 08200120040010000300041224500790044225000120052126000510053330000350058449000480061950400640 06675050675007315200735014066500030021416500014021717000023021858300049022089000014022579600 03302271948002902304700839020090428114549.0080822s2009 ctua b 001 0 eng a 2008037446 a236328594 a9781591585862 (alk. paper) a1591585864 (alk. paper) a9781591587002 (pbk. : alk. paper) a159158700X (pbk. : alk. paper) a99932583184 a(OCoLC) ocn236328585 a(OCoLC)236328585z(OCoLC)236328594 a(NNC)7008390 aDLCcDLCdBTCTAdBAKERdYDXCPdUKMdC#PdOrLoB-B00aZ666.5b.T39 200900a0252221 aTaylor, Arlene G., d1941-14aThe organization of information /cArlene G. Taylor and Daniel N. Joudrey. a3rd ed. aWestport, Conn. :bLibraries Unlimited,c2009. axxvi, -
Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging
ORIGINAL ARTICLE Neuroscience http://dx.doi.org/10.3346/jkms.2014.29.10.1416 • J Korean Med Sci 2014; 29: 1416-1424 Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging Zang-Hee Cho,1 Nambeom Kim,1 The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Sungbong Bae,2 Je-Geun Chi,1 Korean character) and Hangul (the more newer Korean alphabet), have been used together Chan-Woong Park,1 Seiji Ogawa,1,3 since the 14th century. While Hanja character has its own morphemic base, Hangul being and Young-Bo Kim1 purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these 1Neuroscience Research Institute, Gachon University, Incheon, Korea; 2Department of linguistic differences between Hanja and Hangul, we have launched two studies; first was Psychology, Yeungnam University, Kyongsan, Korea; to find differences in cortical activation when it is stimulated by Hanja and Hangul reading 3Kansei Fukushi Research Institute, Tohoku Fukushi to support the much discussed dual-route hypothesis of logographic and phonological University, Sendai, Japan routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Received: 14 February 2014 Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the Accepted: 5 July 2014 effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) Address for Correspondence: (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are Young-Bo Kim, MD Department of Neuroscience and Neurosurgery, Gachon activated by Hanja reading compared to Hangul reading. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
Recognition of Online Handwritten Gurmukhi Strokes Using Support Vector Machine a Thesis
Recognition of Online Handwritten Gurmukhi Strokes using Support Vector Machine A Thesis Submitted in partial fulfillment of the requirements for the award of the degree of Master of Technology Submitted by Rahul Agrawal (Roll No. 601003022) Under the supervision of Dr. R. K. Sharma Professor School of Mathematics and Computer Applications Thapar University Patiala School of Mathematics and Computer Applications Thapar University Patiala – 147004 (Punjab), INDIA June 2012 (i) ABSTRACT Pen-based interfaces are becoming more and more popular and play an important role in human-computer interaction. This popularity of such interfaces has created interest of lot of researchers in online handwriting recognition. Online handwriting recognition contains both temporal stroke information and spatial shape information. Online handwriting recognition systems are expected to exhibit better performance than offline handwriting recognition systems. Our research work presented in this thesis is to recognize strokes written in Gurmukhi script using Support Vector Machine (SVM). The system developed here is a writer independent system. First chapter of this thesis report consist of a brief introduction to handwriting recognition system and some basic differences between offline and online handwriting systems. It also includes various issues that one can face during development during online handwriting recognition systems. A brief introduction about Gurmukhi script has also been given in this chapter In the last section detailed literature survey starting from the 1979 has also been given. Second chapter gives detailed information about stroke capturing, preprocessing of stroke and feature extraction. These phases are considered to be backbone of any online handwriting recognition system. Recognition techniques that have been used in this study are discussed in chapter three. -
+ Natali A, Professor of Cartqraphy, the Hebreu Uhiversity of -Msalem, Israel DICTIONARY of Toponymfc TERLMINO~OGY Wtaibynafiail~
United Nations Group of E%perts OR Working Paper 4eographicalNames No. 61 Eighteenth Session Geneva, u-23 August1996 Item7 of the E%ovisfonal Agenda REPORTSOF THE WORKINGGROUPS + Natali a, Professor of Cartqraphy, The Hebreu UhiVersity of -msalem, Israel DICTIONARY OF TOPONYMfC TERLMINO~OGY WtaIbyNafiaIl~- . PART I:RaLsx vbim 3.0 upi8elfuiyl9!J6 . 001 . 002 003 004 oo!l 006 007 . ooa 009 010 . ol3 014 015 sequala~esfocJphabedcsaipt. 016 putting into dphabetic order. see dso Kqucna ruIt!% Qphabctk 017 Rtlpreat8Ii00, e.g. ia 8 computer, wflich employs ooc only numm ds but also fetters. Ia a wider sense. aIso anploying punauatiocl tnarksmd-SymboIs. 018 Persod name. Esamples: Alfredi ‘Ali. 019 022 023 biliaw 024 02s seecIass.f- 026 GrqbicsymboIusedurunitiawrIdu~morespedficaty,r ppbic symbol in 1 non-dphabedc writiog ryste.n& Exmlptes: Chinese ct, , thong; Ambaric u , ha: Japaoese Hiragana Q) , no. 027 -.modiGed Wnprehauive term for cheater. simplified aad character, varIaoL 031 CbmJnyol 032 CISS, featm? 033 cQdedrepfwltatiul 034 035 036 037' 038 039 040 041 042 047 caavasion alphabet 048 ConMQo table* 049 0nevahte0frpointinlhisgr8ti~ . -.- w%idofplaaecoordiaarurnm;aingoftwosetsofsnpight~ -* rtcight8ngfIertoeachotkrodwithap8ltKliuofl8qthonbo&. rupenmposedonr(chieflytopogtaphtc)map.see8lsouTM gz 051 see axxdimtes. rectangufar. 052 A stahle form of speech, deriyed from a pbfgin, which has became the sole a ptincipal language of 8 qxech comtnunity. Example: Haitian awle (derived from Fresh). ‘053 adllRaIfeatlue see feature, allhlral. 054 055 * 056 057 Ac&uioaofsoftwamrcqkdfocusingrdgRaIdatabmem rstoauMe~osctlto~thisdatabase. 058 ckalog of defItitioas of lbe contmuofadigitaldatabase.~ud- hlg data element cefw labels. f0mw.s. internal refm codMndtextemty,~well~their-p,. 059 see&tadichlq. 060 DeMptioa of 8 basic unit of -Lkatifiile md defiile informatioa tooccqyrspecEcdataf!eldinrcomputernxaxtLExampk Pateofmtifii~ofluwtby~namaturhority’. -
Proposal for a Korean Script Root Zone LGR 1 General Information
(internal doc. #: klgp220_101f_proposal_korean_lgr-25jan18-en_v103.doc) Proposal for a Korean Script Root Zone LGR LGR Version 1.0 Date: 2018-01-25 Document version: 1.03 Authors: Korean Script Generation Panel 1 General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Korean Script LGR in the XML format and the rationale behind the design decisions taken. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document below: • proposal-korean-lgr-25jan18-en.xml Labels for testing can be found in the accompanying text document below: • korean-test-labels-25jan18-en.txt In Section 3, we will see the background on Korean script (Hangul + Hanja) and principal language using it, i.e., Korean language. The overall development process and methodology will be reviewed in Section 4. The repertoire and variant groups in K-LGR will be discussed in Sections 5 and 6, respectively. In Section 7, Whole Label Evaluation Rules (WLE) will be described and then contributors for K-LGR are shown in Section 8. Several appendices are included with separate files. proposal-korean-lgr-25jan18-en 1 / 73 1/17 2 Script for which the LGR is proposed ISO 15924 Code: Kore ISO 15924 Key Number: 287 (= 286 + 500) ISO 15924 English Name: Korean (alias for Hangul + Han) Native name of the script: 한글 + 한자 Maximal Starting Repertoire (MSR) version: MSR-2 [241] Note. -
The Japanese Writing Systems, Script Reforms and the Eradication of the Kanji Writing System: Native Speakers’ Views Lovisa Österman
The Japanese writing systems, script reforms and the eradication of the Kanji writing system: native speakers’ views Lovisa Österman Lund University, Centre for Languages and Literature Bachelor’s Thesis Japanese B.A. Course (JAPK11 Spring term 2018) Supervisor: Shinichiro Ishihara Abstract This study aims to deduce what Japanese native speakers think of the Japanese writing systems, and in particular what native speakers’ opinions are concerning Kanji, the logographic writing system which consists of Chinese characters. The Japanese written language has something that most languages do not; namely a total of three writing systems. First, there is the Kana writing system, which consists of the two syllabaries: Hiragana and Katakana. The two syllabaries essentially figure the same way, but are used for different purposes. Secondly, there is the Rōmaji writing system, which is Japanese written using latin letters. And finally, there is the Kanji writing system. Learning this is often at first an exhausting task, because not only must one learn the two phonematic writing systems (Hiragana and Katakana), but to be able to properly read and write in Japanese, one should also learn how to read and write a great amount of logographic signs; namely the Kanji. For example, to be able to read and understand books or newspaper without using any aiding tools such as dictionaries, one would need to have learned the 2136 Jōyō Kanji (regular-use Chinese characters). With the twentieth century’s progress in technology, comparing with twenty years ago, in this day and age one could probably theoretically get by alright without knowing how to write Kanji by hand, seeing as we are writing less and less by hand and more by technological devices. -
Download; (2) the Appropriate Log-In and Password to Access the Server; and (3) Where on the Server (I.E., in What Folder) the File Was Kept
AN ALCTS MONOGRAPH LINKED DATA FOR THE PERPLEXED LIBRARIAN SCOTT CARLSON CORY LAMPERT DARNELLE MELVIN AND ANNE WASHINGTON chicago | 2020 alastore.ala.org © 2020 by the American Library Association Extensive effort has gone into ensuring the reliability of the information in this book; however, the publisher makes no warranty, express or implied, with respect to the material contained herein. ISBNs 978-0-8389-4746-3 (paper) 978-0-8389-4712-8 (PDF) 978-0-8389-4710-4 (ePub) 978-0-8389-4711-1 (Kindle) Library of Congress Control Number: 2019053975 Cover design by Alejandra Diaz. Text composition by Dianne M. Rooney in the Adobe Caslon Pro and Archer typefaces. This paper meets the requirements of ANSI/NISO Z39.48–1992 (Permanence of Paper). Printed in the United States of America 23 24 22 21 20 5 4 3 2 1 alastore.ala.org CONTENTS Acknowledgments vii Introduction ix One Enquire Within upon Everything 1 The Origins of Linked Data Two Unfunky and Obsolete 17 From MARC to RDF Three Mothership Connections 39 URIs and Serializations Four What Is a Thing? 61 Ontologies and Linked Data Five Once upon a Time Called Now 77 Real-World Examples of Linked Data Six Tear the Roof off the Sucker 105 Linked Library Data Seven Freaky and Habit-Forming 121 Linked Data Projects That Even Librarians Can Mess Around With EPILOGUE The Unprovable Pudding: Where Is Linked Data in Everyday Library Life? 139 Bibliography 143 Glossary 149 Figure Credits 153 About the Authors 155 Index 157 alastore.ala.orgv INTRODUCTION ince the mid-2000s, the greater GLAM (galleries, libraries, archives, and museums) community has proved itself to be a natural facilitator S of the idea of linked data—that is, a large collection of datasets on the Internet that is structured so that both humans and computers can understand it. -
Preparing for a Linked Data Approach to Name Authority Control in an Institutional Repository Context
Title Assessing author identifiers: preparing for a linked data approach to name authority control in an institutional repository context Author details Corresponding author: Moira Downey, Digital Repository Content Analyst, Duke University ([email protected] ; 919 660 2409; https://orcid.org/0000-0002-6238-4690) 1 Abstract Linked data solutions for name authority control in digital libraries are an area of growing interest, particularly among institutional repositories (IRs). This article first considers the shift from traditional authority files to author identifiers, highlighting some of the challenges and possibilities. An analysis of author name strings in Duke University's open access repository, DukeSpace, is conducted in order to identify a suitable source of author URIs for Duke's newly launched repository for research data. Does one of three prominent international authority sources—LCNAF, VIAF, and ORCID—demonstrate the most comprehensive uptake? Finally, recommendations surrounding a technical approach to leveraging author URIs at Duke are briefly considered. Keywords Name authority control, Authority files, Author identifiers, Linked data, Institutional repositories 2 Introduction Linked data has increasingly been looked upon as an encouraging model for storing metadata about digital objects in the libraries, archives and museums that constitute the cultural heritage sector. Writing in 2010, Coyle draws a connection between the affordances of linked data and the evolution of what she refers to as "bibliographic control," that is, "the organization of library materials to facilitate discovery, management, identification, and access" (2010, p. 7). Coyle notes the encouragement of the Working Group on the Future of Bibliographic Control to think beyond the library catalog when considering avenues by which users seek and encounter information, as well as the group's observation that the future of bibliographic control will be "collaborative, decentralized, international in scope, and Web- based" (2010, p. -
There Are No Limits to Learning! Academic and High School
Brick and Click Libraries An Academic Library Symposium Northwest Missouri State University Friday, November 5, 2010 Managing Editors: Frank Baudino Connie Jo Ury Sarah G. Park Co-Editor: Carolyn Johnson Vicki Wainscott Pat Wyatt Technical Editor: Kathy Ferguson Cover Design: Sean Callahan Northwest Missouri State University Maryville, Missouri Brick & Click Libraries Team Director of Libraries: Leslie Galbreath Co-Coordinators: Carolyn Johnson and Kathy Ferguson Executive Secretary & Check-in Assistant: Beverly Ruckman Proposal Reviewers: Frank Baudino, Sara Duff, Kathy Ferguson, Hong Gyu Han, Lisa Jennings, Carolyn Johnson, Sarah G. Park, Connie Jo Ury, Vicki Wainscott and Pat Wyatt Technology Coordinators: Sarah G. Park and Hong Gyu Han Union & Food Coordinator: Pat Wyatt Web Page Editors: Lori Mardis, Sarah G. Park and Vicki Wainscott Graphic Designer: Sean Callahan Table of Contents Quick & Dirty Library Promotions That Really Work! 1 Eric Jennings, Reference & Instruction Librarian Kathryn Tvaruzka, Education Reference Librarian University of Wisconsin Leveraging Technology, Improving Service: Streamlining Student Billing Procedures 2 Colleen S. Harris, Head of Access Services University of Tennessee – Chattanooga Powerful Partnerships & Great Opportunities: Promoting Archival Resources and Optimizing Outreach to Public and K12 Community 8 Lea Worcester, Public Services Librarian Evelyn Barker, Instruction & Information Literacy Librarian University of Texas at Arlington Mobile Patrons: Better Services on the Go 12 Vincci Kwong, -
Contribution to the UN Secretary-General's 2018 Report
COMMISSION ON SCIENCE AND TECHNOLOGY FOR DEVELOPMENT (CSTD) Twenty-second session Geneva, 13 to 17 May 2019 Submissions from entities in the United Nations system and elsewhere on their efforts in 2018 to implement the outcome of the WSIS Submission by Internet Corporation for Assigned Names and Numbers This submission was prepared as an input to the report of the UN Secretary-General on "Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels" (to the 22nd session of the CSTD), in response to the request by the Economic and Social Council, in its resolution 2006/46, to the UN Secretary-General to inform the Commission on Science and Technology for Development on the implementation of the outcomes of the WSIS as part of his annual reporting to the Commission. DISCLAIMER: The views presented here are the contributors' and do not necessarily reflect the views and position of the United Nations or the United Nations Conference on Trade and Development. 2018 ANNUAL REPORT TO UNCTAD: ICANN CONTRIBUTION Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels Executive Summary ICANN is pleased and honoured be invited to contribute to this annual UNCTAD Report. We value our involvement with, and contribution to, the overall WSIS process and to our relationship with the UN Commission on Science and Technology for Development (CSTD). 2018 has been a busy and important year for ICANN and for the Internet Governance Ecosystem in general; with the ITU Plenipotentiary taking place in Dubai and the IGF in Paris. -
What Are Controlled Vocabularies?
2. What Are Controlled Vocabularies? A controlled vocabulary is an organized arrangement of words and phrases used to index content and/or to retrieve content through browsing or searching. It typically includes preferred and variant terms and has a defined scope or describes a specific domain. 2.1. Purpose of Controlled Vocabularies The purpose of controlled vocabularies is to organize information and to provide terminology to catalog and retrieve information. While capturing the richness of variant terms, controlled vocabularies also promote consistency in preferred terms and the assignment of the same terms to similar content. Given that a shared goal of the cultural heritage community is to improve access to visual arts and material culture information, controlled vocabularies are essential. They are necessary at the indexing phase because without them catalogers will not consistently use the same term to refer to the same person, place, or thing. In the retrieval process, various end users may use different synonyms or more generic terms to refer to a given concept. End users are often not specialists and thus need to be guided because they may not know the correct term. The most important functions of a controlled vocabulary are to gather together variant terms and synonyms for concepts and to link concepts in a logical order or sort them into categories. Are a rose window and a Catherine wheel the same thing? How is pot-metal glass related to the more general term stained glass? The links and relationships in a controlled vocabulary ensure that these connections are defined and maintained, for both cataloging and retrieval.