The Balancing of Steam Locomotives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Locomotives Designed and Built at Horwich, with Some Results
JULY 1909. LOCOMOTIVES DESIGNED AND BUILT AT HORWICH, WITH SOME RESULTS. - BY MR. GEORGE HUGHES, Member, CHIEF MECHANICALENGINEER, LAKCASHIRE AND YORKSHIRERAILWAY, HORWICH. Before discussing the desigu and performance of locomotives, the critic must have some knowledge of the railway upon which they run, and the nature of the work they perform. Particulars will be found by referring to the Appendices (pages 598-620), and the subjoined diagram Fig. 1 (page 5621, and statement, which give the power and weight of the various locomotives operating this traffic. The Lancashire and Yorkshire Railway Company possess 1,517 locomotives, 1,052 of which have been constructed at Horwich, and there are about 1,100 engines in steam daily, varying, of course, according to the demands of the traffic. When the works at Horwich were opened, the company had 1,000 engines, namely, 353 passenger, and 647 goods. There were 29 different types of passenger-engines, and 26 types of goods- engines. Realizing the great importance of having as few classes as possible, Mr. Aspinall, then Chief Mechanical Engineer, resolved to reduce the number, and to introduce standardization, and, wherever possible, interchangeabilit) . This policy, no doubt, from Downloaded from pme.sagepub.com at Purdue University Libraries on June 9, 2016 562 HORWICH LOCOMOTIVES. JULY 1909. Figt. IbS < 200.000 f80.000 160.000 14aooo .s0 120.000 h 100,000 6 80.000 60.000 40.000 2q 000 > Datum 20.000 t 30.000 % E 60.000 ' 80.000 Downloaded from pme.sagepub.com at Purdue University Libraries on June 9, 2016 JULY 1909. -
TRACKS Will Be a Useful Reference
TTRRAACCKKSS Inter City Railway Society May 2014 Inter City Railway Society founded 1973 www.intercityrailwaysociety.org Volume 42 No.5 Issue 497 May 2014 The content of the magazine is the copyright of the Society No part of this magazine may be reproduced without prior permission of the copyright holder President: Simon Mutten (01603 715701) Coppercoin, 12 Blofield Corner Rd, Blofield, Norwich, Norfolk NR13 4RT Chairman: Carl Watson - [email protected] Mob (07403 040533) 14, Partridge Gardens, Waterlooville, Hampshire PO8 9XG Treasurer: Peter Britcliffe - [email protected] (01429 234180) 9 Voltigeur Drive, Hart, Hartlepool TS27 3BS Membership Sec: Trevor Roots - [email protected] (01466 760724) Mill of Botary, Cairnie, Huntly, Aberdeenshire AB54 4UD Mob (07765 337700) Secretary: Stuart Moore - [email protected] (01603 714735) 64 Blofield Corner Rd, Blofield, Norwich, Norfolk NR13 4SA Events: Louise Watson - [email protected] Mob (07921 587271) 14, Partridge Gardens, Waterlooville, Hampshire PO8 9XG Magazine: Editor: Trevor Roots - [email protected] details as above Editorial Team: Sightings: James Holloway - [email protected] (0121 744 2351) 246 Longmore Road, Shirley, Solihull B90 3ES Traffic News: John Barton - [email protected] (0121 770 2205) 46, Arbor Way, Chelmsley Wood, Birmingham B37 7LD Website: Manager: Christine Field - [email protected] (01466 760724) Mill of Botary, Cairnie, Huntly, Aberdeenshire AB54 4UD Mob (07765 337700) Yahoo Administrator: Steve Revill Books: Publications Manager: Carl Watson - [email protected] details as above Publications Team: Trevor Roots / Carl Watson / Eddie Rathmill / Lee Mason Contents: Officials Contact List ......................................... 2 Stock Changes / Repatriated 92s ......... 44, 47 Society Notice Board ..................................... 2-5 Traffic and Traction News ................... -
Section 1 (Parts 1 - 4) of This Specification Includes Rail Welding by Electric Flash-Butt Welding Method
SECTION 05091 RAIL WELDING NOTE: Section 1 (Parts 1 - 4) of this specification includes rail welding by Electric Flash-Butt Welding method. Section 2 (Parts 5 - 8) of this specification includes rail welding by the Thermite Rail Welding method. SECTION 1 - ELECTRIC FLASH-BUTT WELDING PART 1 - GENERAL 1.01 SECTION INCLUDES A. The work specified in this section shall include the fabrication of continuous welded rail (CWR) strings by electric flash-butt welding, including testing, inspection, and qualification of welding and welders. B. The work specified in this section shall also include movement of rail from the manufacturer to the Contractor’s welding plant, from the welding plant to the welded string storage location and from the storage location to the final placement in track location. 1.02 RELATED SECTIONS A. Section 05651- General Track Construction B. Section 05652 - Ballasted Track Construction C. Section 05653 - Direct Fixation Track Construction D. Section 05656 - Running Rail 1.03 REFERENCES A. American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering, Vol. I, Chapter 4, Specification for Fabrication of Continuous Welded Rail (latest addition). B. ASTM E18 C . ASTM E709 (replaced E109) D . ASTM E94 (replaced E142) E. ASTM E164 F . ASTM E709 (duplicate) G. AWS D1.1 1X0000 (11/07) 05091 - 1 H. USNRC Rules and Regulations, Title 10, Atomic Energy, Part 20. I. ASNT SNT-TC-1A Recommended Guidelines for Qualification and Certification of Non- Destructive Testing Personnel. 1.04 SUBMITTALS A. The Contractor shall submit procedures and documentation in accordance with the Section 01300 and as follows. -
The Carrying Trade and the First Railways in England, C1750-C1850
The Carrying Trade and the First Railways in England, c1750-c1850 Carolyn Dougherty PhD University of York Railway Studies November 2018 Abstract Transport and economic historians generally consider the change from moving goods principally on roads, inland waterways and coastal ships to moving them principally on railways as inevitable, unproblematic, and the result of technological improvements. While the benefits of rail travel were so clear that most other modes of passenger transport disappeared once rail service was introduced, railway goods transport did not offer as obvious an improvement over the existing goods transport network, known as the carrying trade. Initially most railways were open to the carrying trade, but by the 1840s railway companies began to provide goods carriage and exclude carriers from their lines. The resulting conflict over how, and by whom, goods would be transported on railways, known as the carrying question, lasted more than a decade, and railway companies did not come to dominate domestic goods carriage until the 1850s. In this study I develop a fuller picture of the carrying trade than currently exists, highlighting its multimodal collaborative structure and setting it within the ‘sociable economy’ of late eighteenth- and early nineteenth-century England. I contrast this economy with the business model of joint-stock companies, including railway companies, and investigate responses to the business practices of these companies. I analyse the debate over railway company goods carriage, and identify changes in goods transport resulting from its introduction. Finally, I describe the development and outcome of the carrying question, showing that railway companies faced resistance to their attempts to control goods carriage on rail lines not only from the carrying trade but also from customers of goods transport, the government and the general public. -
3 Power Supply
3 Power supply Table of contents Article 44 Installation, etc. of Contact Lines, etc. .........................................................................2 Article 45 Approach or Crossing of Overhead Contact Lines, etc................................................ 10 Article 46 Insulation Division of Contact Lines............................................................................ 12 Article 47 Prevention of Problems under Overbridges, etc........................................................... 13 Article 48 Installation of Return Current Rails ........................................................................... 13 Article 49 Lightning protection..................................................................................................... 13 Article 51 Facilities at substations................................................................................................. 14 Article 52 Installation of electrical equipment and switchboards ................................................. 15 Article 53 Protection of electrical equipment................................................................................ 16 Article 54 Insulation of electric lines ............................................................................................ 16 Article 55 Grounding of Electrical Equipment ............................................................................. 18 Article 99 Inspection and monitoring of the contact lines on the main line.................................. 19 Article 101 Records........................................................................................................................ -
How Did George Stephenson Change Lives?
How did George Stephenson change lives? Timeline 1812 1825 1829 1850 1863 1863 1879 1912 1938 1964 Invention of The first George Luxury steam ‘The flying The The first First diesel Mallard The first high trains with soft the steam railroad opens Stephenson Scotsman’ Metropolitan electric locomotive train speed trains train in Britain seats, sleeping had its first is opened as train runs in invented run in Japan. invents ‘The and dining journey. the first presented Switzerland ‘The bullet Rocket’ underground in Berlin train railway (Germany) invented’ Key Vocabulary Famous figures The Flying diesel These locomotives burn diesel as fuel and Scotsman is a were far more powerful than previous George Stephenson (1781-1848) steam train that steam locomotives. He worked on the development of ran from Edinburgh electric Powered from electricity which they collect to London. railway tracks and bridge building from overhead cables. and also designed the ‘Rocket’ high-speed Initially produced in Japan but now which won the Rainhill Trials in international, these trains are really fast. The Mallard holds 1829. It was the fastest steam locomotive Engines which provide the power to pull a the record for the locomotive of its time, reaching 30 whole train made up of carriages or fastest steam train miles an hour. Some people were wagons. Rainhill The Liverpool and Manchester railway at 126 mph. scared of the train as they felt it Trials competition to find the best locomotive, could be dangerous to go so fast! won by Stephenson’s Rocket. steam Powered by burning coal. Steam was fed The Bullet is a into cylinders to move long rods (pistons) Japanese high The Rocket and make the wheels turn. -
Modernizing the Opposed-Piston, Two-Stroke Engine For
Modernizing the Opposed-Piston, Two-Stroke Engine 2013-26-0114 for Clean, Efficient Transportation Published on 9th -12 th January 2013, SIAT, India Dr. Gerhard Regner, Laurence Fromm, David Johnson, John Kosz ewnik, Eric Dion, Fabien Redon Achates Power, Inc. Copyright © 2013 SAE International and Copyright@ 2013 SIAT, India ABSTRACT Opposed-piston (OP) engines were once widely used in Over the last eight years, Achates Power has perfected the OP ground and aviation applications and continue to be used engine architecture, demonstrating substantial breakthroughs today on ships. Offering both fuel efficiency and cost benefits in combustion and thermal efficiency after more than 3,300 over conventional, four-stroke engines, the OP architecture hours of dynamometer testing. While these breakthroughs also features size and weight advantages. Despite these will initially benefit the commercial and passenger vehicle advantages, however, historical OP engines have struggled markets—the focus of the company’s current development with emissions and oil consumption. Using modern efforts—the Achates Power OP engine is also a good fit for technology, science and engineering, Achates Power has other applications due to its high thermal efficiency, high overcome these challenges. The result: an opposed-piston, specific power and low heat rejection. two-stroke diesel engine design that provides a step-function improvement in brake thermal efficiency compared to conventional engines while meeting the most stringent, DESIGN ATTRIBUTES mandated emissions -
Four-Stroke Cycle Trunk Piston Type Diesel Engine Diesel-Viertaktmotor Moteur Diesel a Quatre Temps
Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 529 935 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: F16C 5/00, F02B 75/32 of the grant of the patent: 15.05.1996 Bulletin 1996/20 (21) Application number: 92307594.9 (22) Date of filing: 19.08.1992 (54) Four-stroke cycle trunk piston type diesel engine Diesel-Viertaktmotor Moteur Diesel a quatre temps (84) Designated Contracting States: (56) References cited: CH DE DK GB LI DE-A-2 620 910 DE-C- 577 389 DE-U- 9 003 721 US-A-2 057 158 (30) Priority: 29.08.1991 JP 218587/91 US-A-2 410 565 (43) Date of publication of application: • "Bau und Berechnung von 03.03.1993 Bulletin 1993/09 Verbrennungsmotoren" 1983 • "Verbrennungsmotoren Band 1" 1990 (73) Proprietor: THE HANSHIN DIESEL WORKS, LTD. • "Krafte, Momente und deren Ausgleich in der Kobe, Hyogo 650 (JP) Verbrennungskraftmaschine" 1981 • "Motoren Technik Praxis Geschichte" 1982 (72) Inventor: Nakano, Hideaki • "Gestaltungen und Hauptabmessungen der Okubo-cho, Akashi, Hyogo 674 (JP) Verbrennunskraftmaschine" 1979 • Forscher Bericht VDI "Entwicklungsaspekte bei (74) Representative: Rackham, Anthony Charles Grossdieselmotoren" 1985 Lloyd Wise, Tregear & Co., • "The Motor Ship" Feb 1993 Commonwealth House, 1-19 New Oxford Street London WC1A 1LW (GB) DO lO CO O) O) CM LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. -
BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1
BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1 BRITAIN‘S LEADING HISTORICAL RAILWAY JOURNAL VOLUME 22 • NUMBER 1 • JANUARY 2008 • £3.60 IN THIS ISSUE 150 YEARS OF THE SOMERSET & DORSET RAILWAY GWR RAILCARS IN COLOUR THE NORTH CORNWALL LINE THE FURNESS LINE IN COLOUR PENDRAGON BRITISH ENGLISH-ELECTRIC MANUFACTURERS PUBLISHING THE GWR EXPRESS 4-4-0 CLASSES THE COMPREHENSIVE VOICE OF RAILWAY HISTORY BACKTRACK 22-1 2008:Layout 1 21/11/07 15:59 Page 64 THE COMPREHENSIVE VOICE OF RAILWAY HISTORY END OF THE YEAR AT ASHBY JUNCTION A light snowfall lends a crisp feel to this view at Ashby Junction, just north of Nuneaton, on 29th December 1962. Two LMS 4-6-0s, Class 5 No.45058 piloting ‘Jubilee’ No.45592 Indore, whisk the late-running Heysham–London Euston ‘Ulster Express’ past the signal box in a flurry of steam, while 8F 2-8-0 No.48349 waits to bring a freight off the Ashby & Nuneaton line. As the year draws to a close, steam can ponder upon the inexorable march south of the West Coast Main Line electrification. (Tommy Tomalin) PENDRAGON PUBLISHING www.pendragonpublishing.co.uk BACKTRACK 22-1 2008:Layout 1 21/11/07 14:17 Page 4 SOUTHERN GONE WEST A busy scene at Halwill Junction on 31st August 1964. BR Class 4 4-6-0 No.75022 is approaching with the 8.48am from Padstow, THE NORTH CORNWALL while Class 4 2-6-4T No.80037 waits to shape of the ancient Bodmin & Wadebridge proceed with the 10.00 Okehampton–Padstow. -
Station Sign 64” 2 14 Bennet
Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 1 14 West Hollis – Station sign 64” 2 14 Bennett Hall – Station sign 69” Arnold Wilder 3 14 Fitchburg “Wood” Station sign 56” Arnold Wilder 4 14 Woburn “Wood” Station sign 30” Charles Smith 5 14 Danville Junction – Station Sign 96” Anonymous 6 14 West Fitchburg – Station sign 92” Arnold Wilder 7 14 West Hollis – Station sign 72” Arnold Wilder 8 14 Scheghticoke – Station sign 76” Arnold Wilder 9 14 Hubbardston – Station sign 76” Arnold Wilder 10 14 Winchester “Wood” Station sign 68” 11 14 Wedgmere “Wood” Station Sign 56” 12 14 Salem – Station sign 48” 13 14 Whately – Station sign 52”x 11” 14 14 Mt Tom – Station sign 42”x 10 ½” 15 14 Middlesex “Wood” Station sign 54” Carl Byron 16 15 Railway Express Agency - sign 72” 17 15 B&MRR Passenger Waiting Room - sign 32”x 11” 18 15 B&M Outing - sign 23”x 14” 19 15 Yard Limit – sign 16”x 14” 20 15 Notice no Deliveries “Wood” – sign 18”x 24” 21 15 Private Crossing “Plastic” – sign 18”x 6” 22 15 Free Parking “Wood” – sign 24 ½”x 8” 23 15 Railroad Crossing – Sign 36”x 36” 24 15 2 Tracks sign “White /w Black lettering (2 each) 27”x 18” 25 15 Railroad Crossbuck /w reflectors (2 each) 26 14 Lowell Station – sign reproduction Property of the Boston & Maine Railroad Historical Society Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 27 15 Hand Held Stop – sign Donald S. -
The Evolution of the Steam Locomotive, 1803 to 1898 (1899)
> g s J> ° "^ Q as : F7 lA-dh-**^) THE EVOLUTION OF THE STEAM LOCOMOTIVE (1803 to 1898.) BY Q. A. SEKON, Editor of the "Railway Magazine" and "Hallway Year Book, Author of "A History of the Great Western Railway," *•., 4*. SECOND EDITION (Enlarged). £on&on THE RAILWAY PUBLISHING CO., Ltd., 79 and 80, Temple Chambers, Temple Avenue, E.C. 1899. T3 in PKEFACE TO SECOND EDITION. When, ten days ago, the first copy of the " Evolution of the Steam Locomotive" was ready for sale, I did not expect to be called upon to write a preface for a new edition before 240 hours had expired. The author cannot but be gratified to know that the whole of the extremely large first edition was exhausted practically upon publication, and since many would-be readers are still unsupplied, the demand for another edition is pressing. Under these circumstances but slight modifications have been made in the original text, although additional particulars and illustrations have been inserted in the new edition. The new matter relates to the locomotives of the North Staffordshire, London., Tilbury, and Southend, Great Western, and London and North Western Railways. I sincerely thank the many correspondents who, in the few days that have elapsed since the publication: of the "Evolution of the , Steam Locomotive," have so readily assured me of - their hearty appreciation of the book. rj .;! G. A. SEKON. -! January, 1899. PREFACE TO FIRST EDITION. In connection with the marvellous growth of our railway system there is nothing of so paramount importance and interest as the evolution of the locomotive steam engine. -
Bitten by the Bug Part 1 R J Alliott
• Bitten by The Bug Part 1 R J Alliott Britain’s railway history is littered with a perhaps surprising number of one-offs - the Turbomotive, the Hush-Hush, Fowler’s Ghost, the Duke of Gloucester, and the Great Bear. Many of these remained one-offs because they were partially or wholly unsuccessful, because of subsequent changes of direction in locomotive development or because they were only experimental. However, an unusual example of a one-off that was always intended to be unique from the very outset was the LSWR 4-2-4T known officially as Mr. Drummond’s Car , but known far better by locomen of the time and by enthusiasts ever since as “The Bug”. Drummond himself has also gone down in locomotive engineer folklore as something of a one-off. Born at Ardrossan in 1840, he had served on the Dumbartonshire and Caledonian Railways, and at the North British Railway, where he worked under S. W. Johnson, before moving to the Highland Railway at Inverness under William Stroudley. After a spell with Stroudley again at Brighton, he had become locomotive superintendent of the North British Railway in 1875. Seven years later he joined the Caledonian, but then jointly formed the unsuccessful Australasian Locomotive Engine Works at Sydney. He had then returned quickly to Scotland and founded the Glasgow Railway Engineering Company, finally joining the London and South Western on 1st August 1895 at the very considerable salary of £1,500, this being sharply increased to £2,000 the following year. At the LSWR, he varied between the brilliant and the sadly unsuccessful in his designs and between the severe and compassionate in his dealings with his men and his machines.