New Method for Robotic Systems Architecture
Total Page:16
File Type:pdf, Size:1020Kb
NEW METHOD FOR ROBOTIC SYSTEMS ARCHITECTURE ANALYSIS, MODELING, AND DESIGN By LU LI Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Roger Quinn Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY August 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Lu Li candidate for the degree of Master of Science. Committee Chair Dr. Roger Quinn Committee Member Dr. Musa Audu Committee Member Dr. Richard Bachmann Date of Defense July 5, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. ii Table of Contents Table of Contents ................................................................................................................................................ i List of Tables ....................................................................................................................................................... ii List of Figures .................................................................................................................................................... iii Copyright page .................................................................................................................................................. iv Preface ..................................................................................................................................................................... v Acknowledgements ....................................................................................................................................... vii Abstract............................................................................................................................................................... viii Introduction .............................................................................................................................................. 1 1.1. The challenges for robots in the real world .............................................................................. 2 1.2. Biological Inspirations........................................................................................................................ 8 1.3. Rethinking Cyber-Physical Systems and Robotics ................................................................ 12 1.4. Outline of the thesis ........................................................................................................................... 16 Methodology ............................................................................................................................................ 17 2.1. Revised Robotic Paradigm and Information Hierarchy ............................................. 18 2.2. New Method for Robotic Architecture Analysis and Planning ............................... 25 Step one: Task analysis ........................................................................................................... 25 Step two: System type identification ................................................................................ 28 Step three: Functional hierarchy modeling ................................................................... 32 Robot Design Case Studies and Results .................................................................................... 35 3.1. Design Case Study I: Smart Force Sensors .............................................................................. 36 3.2. Design Case Study II: Modular Mobile Manipulator............................................................ 42 3.3. Design Case Study III: Hybrid Neuroprosthesis (HNP) ...................................................... 48 Discussions ............................................................................................................................................... 58 Conclusions .............................................................................................................................................. 61 Future Works .......................................................................................................................................... 62 Appendix A Design Note ............................................................................................................................. 64 Bibliography ..................................................................................................................................................... 68 i List of Tables Table 1. Task analysis table with sample tasks with functional allocation and performance requirements metric scoring. ........................................................................................................................... 26 Table 2. Task analysis for smart force sensor design. ............................................................................ 38 Table 3. Task analysis for the modular mobile manipulator system. .............................................. 43 Table 4. Task analysis of some subprocesses examples with the HNP system. ........................... 52 Table 5. Three generations of the modular combination of three layers of the HNP subsystem electronics and its migration path. .......................................................................................... 57 ii List of Figures Figure 1. Cartoon of an inside joke that defines the territory and niche of this thesis. ............. vi Figure 2. Biologically inspired robots developed at .................................................................................. 2 Figure 3. Block diagram that compares the human nervous system to .......................................... 11 Figure 4. The four-quadrant diagram of a rough comparison of robotic algorithms and applications based on computational complexity and cyber-physical interactions. ................. 13 Figure 5. The outline of the methodology chapter: a revised robotic paradigm with a three- step method for robotic system architecture analysis, modeling, and design. ............................ 17 Figure 6. The "Sense-Plan-Act" mental model and the extended hybrid deliberate/reactive paradigm. .................................................................................................................................................................. 19 Figure 7. DIKW pyramid model. ...................................................................................................................... 21 Figure 8. DIKW pyramid model (left) and the combined model with "Sense-Plan-Act" paradigm(right). ..................................................................................................................................................... 23 Figure 9. Decision tree diagram of selecting the optimal system architecture for given robotic system problem. ..................................................................................................................................... 31 Figure 10. An abstracted system architecture model for robotics. ................................................... 32 Figure 11. Diagram of Information Pathways. ........................................................................................... 34 Figure 12. Smart Force Sensor assembly. .................................................................................................... 37 Figure 13. Abstracted system type model for the conventional force sensor (left) compares to the smart force sensor (right). .................................................................................................................... 39 Figure 14. System hierarchy and information pathways diagram of the smart force sensor. ....................................................................................................................................................................................... 40 Figure 15. Smart Force Sensor deployed on industrial(a) and medical(d) robotic systems, with the onboard stiffness estimation result (c & e)............................................................................... 41 Figure 16. Modular Mobile Manipulator System change to two operation configurations. ... 42 Figure 17. Abstracted system architecture model for the modular mobile manipulator system. ........................................................................................................................................................................ 44 Figure 18. System hierarchy and information pathways diagram for ............................................. 46 Figure 19. Modular Mobile Manipulator System deployed in a confined space mockup for manufacturing and inspection demonstration. ......................................................................................... 47 Figure 20. The system core components for the HNP system (passive hydraulic configuration).......................................................................................................................................................... 49 Figure 21. Abstracted system architecture model of the Hybrid Neuroprosthesis (HNP). ... 54 Figure 22. Diagram of Layered Modular Robotic Paradigm and System Architecture for HNP. ....................................................................................................................................................................................... 55 Figure 23. Function components