The Personal Rover Project Illah R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robot Operating System - the Complete Reference (Volume 4) Part of the Studies in Computational Intelligence Book Series (SCI, Volume 831)
Book Robot Operating System - The Complete Reference (Volume 4) Part of the Studies in Computational Intelligence book series (SCI, volume 831) Several authors CISTER-TR-190702 2019 Book CISTER-TR-190702 Robot Operating System - The Complete Reference (Volume 4) Robot Operating System - The Complete Reference (Volume 4) Several authors CISTER Research Centre Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto Portugal Tel.: +351.22.8340509, Fax: +351.22.8321159 E-mail: https://www.cister-labs.pt Abstract This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features. © 2019 CISTER Research Center 1 www.cister-labs.pt Studies in Computational Intelligence 831 Anis Koubaa Editor Robot Operating System (ROS) The Complete Reference (Volume 4) Studies in Computational Intelligence Volume 831 Series Editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland [email protected] The series “Studies in Computational Intelligence” (SCI) publishes new develop- ments and advances in the various areas of computational intelligence—quickly and with a high quality. -
New Method for Robotic Systems Architecture
NEW METHOD FOR ROBOTIC SYSTEMS ARCHITECTURE ANALYSIS, MODELING, AND DESIGN By LU LI Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Roger Quinn Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY August 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Lu Li candidate for the degree of Master of Science. Committee Chair Dr. Roger Quinn Committee Member Dr. Musa Audu Committee Member Dr. Richard Bachmann Date of Defense July 5, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. ii Table of Contents Table of Contents ................................................................................................................................................ i List of Tables ....................................................................................................................................................... ii List of Figures .................................................................................................................................................... iii Copyright page .................................................................................................................................................. iv Preface ..................................................................................................................................................................... v Acknowledgements -
Upgrading a Legacy Outdoors Robotic Vehicle4
Upgrading a Legacy Outdoors Robotic Vehicle4 1 1 2 Theodosis Ntegiannakis , Odysseas Mavromatakis , Savvas Piperidis , and Nikos C. Tsourveloudis3 1 Theodosis Ntegiannakis and Odysseas Mavromatakis are graduate students at the School of Production Engineering and Management, Technical University of Crete, Hellas. 2 corresponding author: Intelligent Systems and Robotics Laboratory, School of Production Engineering and Management, Technical University of Crete, 73100 Chania, Hellas, [email protected], www.robolab.tuc.gr 3 School of Production Engineering and Management, Technical University of Crete, Hellas, [email protected], www.robolab.tuc.gr Abstract. ATRV-mini was a popular, 2000's commercially available, outdoors robot. The successful upgrade procedure of a decommissioned ATRV-mini is presented in this paper. Its robust chassis construction, skid steering ability, and optional wifi connectivity were the major rea- sons for its commercial success, mainly for educational and research pur- poses. However the advances in electronics, microcontrollers and software during the last decades were not followed by the robot's manufacturer. As a result, the robot became obsolete and practically useless despite its good characteristics. The upgrade used up to date, off the shelf compo- nents and open source software tools. There was a major enhancement at robot's processing power, energy consumption, weight and autonomy time. Experimental testing proved the upgraded robot's operational in- tegrity and capability of undertaking educational, research and other typical robotic tasks. Keywords: all terrain autonomous robotic vehicle, educational robotics, ROS, robot upgrade, solar panels. 1 Introduction This work deals with the upgrading procedure of a decommissioned Real World Interface (RWI) ATRV-mini all-terrain robotic vehicle. -
Robotic Paradigms and Control Architectures
Robotic Paradigms and Control Architectures Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 02 B4M36UIR – Artificial Intelligence in Robotics Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 1 / 46 Overview of the Lecture Part 1 – Robotic Paradigms and Control Architectures Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 2 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Part I Part 1 – Robotic Paradigms and Control Architectures Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 3 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Outline Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 4 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Robot A robot perceives an environment using sensors to control its actuators. Sensor Controller Actuators The main parts of the robot correspond to the primitives of robotics: Sense, Plan, and Act. The primitives form a control architecture that is called robotic paradigm. Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 5 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Robotic Paradigms Robotic paradigms define relationship between the robotics primitives: Sense, Plan, and Act. Three fundamental paradigms have been propose. 1. Hierarchical paradigm is purely deliberative system. SENSEPLAN ACT 2. Reactive paradigm represents reactive control. SENSE ACT 3. -
The Personal Rover Project: the Comprehensive Design of A
Robotics and Autonomous Systems 42 (2003) 245–258 The Personal Rover Project: The comprehensive design of a domestic personal robot Emily Falcone∗, Rachel Gockley, Eric Porter, Illah Nourbakhsh The Robotics Institute, Carnegie Mellon University, Newell-Simon Hall 3111, 5000 Forbes Ave., Pittsburgh, PA 15213, USA Abstract In this paper, we summarize an approach for the dissemination of robotics technologies. In a manner analogous to the personal computer movement of the early 1980s, we propose that a productive niche for robotic technologies is as a long-term creative outlet for human expression and discovery. To this end, this paper describes our ongoing efforts to design, prototype and test a low-cost, highly competent personal rover for the domestic environment. © 2003 Elsevier Science B.V. All rights reserved. Keywords: Social robots; Educational robot; Human–robot interaction; Personal robot; Step climbing 1. Introduction duration of interaction and the roles played by human and robot participants. In cases where the human care- Robotics occupies a special place in the arena of giver provides short-term, nurturing interaction to a interactive technologies. It combines sophisticated robot, research has demonstrated the development of computation with rich sensory input in a physical effective social relationships [5,12,21]. Anthropomor- embodiment that can exhibit tangible and expressive phic robot design can help prime such interaction ex- behavior in the physical world. periments by providing immediately comprehensible In this regard, a central question that occupies our social cues for the human subjects [6,17]. research group pertains to the social niche of robotic In contrast, our interest lies in long-term human– artifacts in the company of the robotically uninitiated robot relationships, where a transient suspension of public-at-large: What is an appropriate first role for in- disbelief will prove less relevant than long-term social telligent human–robot interaction in the daily human engagement and growth. -
4 Perception 79
4 Perception 79 4 Perception One of the most important tasks of autonomous systems of any kind is to acquire knowledge about its environment. This is done by taking measurements using various sensors and then extracting meaningful information from those measurements. In this chapter we present the most common sensors used in mobile robots and then discuss strategies for extracting information from the sensors. For more detailed information about many of the sensors used on mobile robots, refer to the comprehensive book Sensors for Mo- bile Robots written by H.R. Everett [2]. 4.1 Sensors for Mobile Robots a b c d Fig 4.1 Examples of robots with multi-sensor systems: a) HelpMate from Transition Research Corp. b) B21 from Real World Interface c) Roboart II, built by H.R. Everett [2] d) The Savannah River Site nuclear surveillance robot There is a wide variety of sensors used in mobile robots (Fig. 4.1). Some sensors are used to measure simple values like the internal temperature of a robot’s electronics or the rota- R. Siegwart, EPFL, Illah Nourbakhsh, CMU 80 Autonomous Mobile Robots tional speed of the motors. Other, more sophisticated sensors can be used to acquire infor- mation about the robot’s environment or even to directly measure a robot’s global position. In this chapter we focus primarily on sensors used to extract information about the robot’s environment. Because a mobile robot moves around, it will frequently encounter unfore- seen environmental characteristics, and therefore such sensing is particularly critical. We begin with a functional classification of sensors. -
Embodied Evolution in Collective Robotics: a Review Nicolas Bredeche, Evert Haasdijk, Abraham Prieto
Embodied Evolution in Collective Robotics: A Review Nicolas Bredeche, Evert Haasdijk, Abraham Prieto To cite this version: Nicolas Bredeche, Evert Haasdijk, Abraham Prieto. Embodied Evolution in Collective Robotics: A Review. Frontiers in Robotics and AI, Frontiers Media S.A., 2018, 5, pp.12. 10.3389/frobt.2018.00012. hal-03313845 HAL Id: hal-03313845 https://hal.sorbonne-universite.fr/hal-03313845 Submitted on 4 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 22 February 2018 doi: 10.3389/frobt.2018.00012 Embodied Evolution in Collective Robotics: A Review Nicolas Bredeche1*, Evert Haasdijk2 and Abraham Prieto3 1 Sorbonne Université, CNRS, Institute of Intelligent Systems and Robotics, ISIR, Paris, France, 2 Computational Intelligence Group, Department of Computer Science, Vrije Universiteit, Amsterdam, Netherlands, 3 Integrated Group for Engineering Research, Universidade da Coruna, Ferrol, Spain This article provides an overview of evolutionary robotics techniques applied to online distributed evolution for robot collectives, namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. This article also presents a comprehensive summary of research published in the field since its inception around the year 2000, providing various perspectives to identify the major trends. -
Pixy Hardware Interface
SSttrriikkeerr EEL 4914 Senior Design I Group 8 Cruz, Efrain Decamp, Loubens Narvaez, Luis Thomas, Brian Competitive Autonomous Air-Hockey Gaming system Table of Contents Table of Contents .................................................................................................. i 1 Executive Summary .......................................................................................... 1 2 Project Description ............................................................................................ 3 2.1 Motivation ................................................................................................................. 3 2.2 Goals and Objectives ................................................................................................. 4 2.3 Requirements and Specifications ........................................................................... 4 2.3.1 User Interface .................................................................................................... 4 2.3.2 Audio and Visual Effects .................................................................................... 6 2.3.3 Tracking System ................................................................................................. 7 2.3.4 Software .............................................................................................................. 9 2.3.5 System Hardware .............................................................................................. 10 2.3.6 Puck Return Mechanism .................................................................................. -
Botball Kit for Teaching Engineering Computing
Botball Kit for Teaching Engineering Computing David P. Miller Charles Winton School of AME Department of CIS University of Oklahoma University of N. Florida Norman, OK 73019 Jacksonville, FL 32224 Abstract Many engineering classes can benefit from hands on use of robots. The KISS Institute Botball kit has found use in many classes at a number of universities. This paper outlines how the kit is used in a few of these different classes at a couple of different universities. This paper also introduces the Collegiate Botball Challenge, and how it can be used as a class project. 1 Introduction Introductory engineering courses are used to teach general principles while introducing the students to all of the engineering disciplines. Robotics, as a multi-disciplinary application can be an ideal subject for projects that stress the different engineering fields. A major consideration in establishing a robotics course emphasizing mobile robots is the type of hands-on laboratory experience that will be incorporated into the course of instruction. Most electrical engineering schools lack the machine shops and expertise needed to create the mechanical aspects of a robot system. Most mechanical engineering schools lack the electronics labs and expertise needed for the actuation, sensing and computational aspects required to support robotics work. The situation is even more dire for most computer science schools. Computer science departments typically do not have the support culture for the kind of laboratories that are more typically associated with engineering programs. On the other hand, it is recognized that computer science students need courses which provide closer to real world experiences via representative hands-on exercises. -
A Multi-Robot Search and Retrieval System
From: AAAI Technical Report WS-02-18. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. MinDART : A Multi-Robot Search & Retrieval System Paul E. Rybski, Amy Larson, Heather Metcalf, Devon Skyllingstad, Harini Veeraraghavan and Maria Gini Department of Computer Science and Engineering, University of Minnesota 4-192 EE/CS Building Minneapolis, MN 55455 {rybski,larson,hmetcalf,dsky,harini,gini}@cs.umn.edu Abstract We are interested in studying how environmental and control factors affect the performance of a homogeneous multi-robot team doing a search and retrieval task. We have constructed a group of inexpensive robots called the Minnesota Distributed Autonomous Robot Team (MinDART) which use simple sen- sors and actuators to complete their tasks. We have upgraded these robots with the CMUCam, an inexpensive camera sys- tem that runs a color segmentation algorithm. The camera allows the robots to localize themselves as well as visually recognize other robots. We analyze how the team’s perfor- mance is affected by target distribution (uniform or clumped), size of the team, and whether search with explicit localization is more beneficial than random search. Introduction Cooperating teams of robots have the potential to outper- form a single robot attempting an identical task. Increasing Figure 1: The robots with their infrared targets and colored task or environmental knowledge may also improve perfor- landmarks. mance, but increased performance comes at a price. In addi- tion to the monetary concerns of building multiple robots, AAAI 2002 Mobile Robot Competition and Exhibition. Fi- the complexity of the control strategy and the processing nally, we analyze how we would expect these robots to per- overhead can outweigh the benefits. -
Vision Based Localization of Mobile Robots
Rochester Institute of Technology RIT Scholar Works Theses 2007 Vision based localization of mobile robots Jason Mooberry Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Mooberry, Jason, "Vision based localization of mobile robots" (2007). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Vision Based Localization of Mobile Robots Jason Mooberry August 2007 Zach Butler 0·Y~7 Roxanne Canosa F"!)..J!OI Richard Zanibbi g (;),"3(07 Golisano College of Computing & Infonnation Sciences Rochester Institute of Technology Rochester, NY 14623 Table of Contents Abstract 1 1 Introduction 1 1.1 Localization 1 1.1.1 Localization with Kalman Filters 1 1.1.2 Markov Localization 2 1.1.3 Monte Carlo Localization 2 1 . 1 .4 Vision Based Localization 3 1 .2 Architecture 3 1.2.1 Deliberative 3 1.2.2 Reactive 4 1.2.3 Behavioral 4 1.2.4 Hybrid 4 2 Monte Carlo Localization 5 2.1 Motion Model 6 2.2 Sensor Model 6 3 Vision Based MCL 7 3.1 Research Platform 7 3.2 Motion Estimation 8 3.2.1 Environment 8 3.2.2 Rotation Error Modeling 8 3.2.3 Translation Error Modeling 1 1 3.2.4 Application ofMotion Model 14 3.3 Sensor Model 15 3.3.1 Naive Correlation with Color Histograms 15 3.4 Resampling 20 3.5 Localization Architecture 21 3.6 Trials 22 3.6.1 Success Indicators 22 3.6.2 Position -
Robotics in Germany and Japan DRESDEN PHILOSOPHY of TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE
Robotics in Germany and Japan DRESDEN PHILOSOPHY OF TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE Edited by /Herausgegeben von Bernhard Irrgang Vol./Bd. 5 Michael Funk / Bernhard Irrgang (eds.) Robotics in Germany and Japan Philosophical and Technical Perspectives Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.d-nb.de. Library of Congress Cataloging-in-Publication Data Robotics in Germany and Japan : philosophical and technical perspectives / Michael Funk, Bernhard Irrgang (eds.). pages cm ----- (Dresden philosophy of technology perspectives, ISSN 1861- -- 423X ; v. 5) ISBN 978-3-631-62071-7 ----- ISBN 978-3-653-03976-4 (ebook) 1. Robotics-----Germany----- Popular works. 2. Robotics----- Japan--Popular works. 3. Robotics-----Philosophy. I. Funk, Michael, 1985- -- editor of compilation. II. Irrgang, Bernhard, editor of compilation. TJ211.15.R626 2014 629.8'920943----- dc23 2013045885 Cover illustration: Humanoid Robot “ARMAR” (KIT, Germany), Photograph: Michael Funk An electronic version of this book is freely available, thanks to the support of libraries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access for the public good. More information about the initiative and links to the Open Access version can be found at www.knowledgeunlatched.org ISSN 1861-423X • ISBN 978-3-631-62071-7 (Print) E-ISBN 978-3-653-03976-4 (E-PDF) • E-ISBN 978-3-653-99964-8 (EPUB) E-ISBN 978-3-653-99963-1 (MOBI) • DOI 10.3726/978-3-653-03976-4 Open Access: This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 unported license.