A Taxonomy for Mobile Robots: Types, Applications, Capabilities, Implementations, Requirements, and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

A Taxonomy for Mobile Robots: Types, Applications, Capabilities, Implementations, Requirements, and Challenges robotics Article A Taxonomy for Mobile Robots: Types, Applications, Capabilities, Implementations, Requirements, and Challenges Uwe Jahn 1,* , Daniel Heß 1, Merlin Stampa 1 , Andreas Sutorma 2 , Christof Röhrig 1, Peter Schulz 3 and Carsten Wolff 1 1 IDiAL Institute, Dortmund University of Applied Science and Arts, Otto-Hahn-Str. 23, 44227 Dortmund, Germany; [email protected] (D.H.); [email protected] (M.S.); [email protected] (C.R.); [email protected] (C.W.) 2 Faculty of Information Technology, Dortmund University of Applied Science and Arts, Sonnenstraße 96, 44139 Dortmund, Germany; [email protected] 3 Faculty of Engineering and Computer Science, Hamburg University of Applied Sciences, 20099 Hamburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-231-9112-9661 Received: 30 October 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Mobile robotics is a widespread field of research, whose differentiation from general robotics is often based only on the ability to move. However, mobile robots need unique capabilities, such as the function of navigation. Also, there are limiting factors, such as the typically limited energy, which must be considered when developing a mobile robot. This article deals with the definition of an archetypal robot, which is represented in the form of a taxonomy. Types and fields of application are defined. A systematic literature review is carried out for the definition of typical capabilities and implementations, where reference systems, textbooks, and literature references are considered. Keywords: robotics; mobile robot; taxonomy; requirements; challenges; capabilities; implementations; literature review; survey 1. Introduction Robotics has become a popular research field over recent decades. The digital library IEEE Xplore (IEEE Xplore [1] is a relevant source for systematic literature searches in the field of computer science and engineering. All publications that have been published in connection with the IEEE are searched. The library includes conference, journal, magazine, books, courses and standards publications.) achieves about 240,000 search hits when searching for “robot OR robotics” in the metadata. Approximately 77,000 search hits were found in the search for mobile robots (“mobile AND (robot OR robotics)”). Figure1 shows that the popularity of robotics has been increasing almost constantly over the last ten years. The relevance of mobile robotics in scientific publications, on the other hand, remained almost constant between 2009 and 2016, and has been increasing rapidly every year since then. On the one hand, this shows that the research area mobile robotics is more relevant than ever before and on the other hand that there are more and more solutions and research results in this area in the form of publications. Robotics 2020, 9, 109; doi:10.3390/robotics9040109 www.mdpi.com/journal/robotics Robotics 2020, 9, 109 2 of 24 Robotics 2020, 0, 5 2 of 24 20, 000 robot OR robotics mobile AND (robot OR robotics) 15, 000 of hits 10, 000 number 5000 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 year FigureFigure1. 1. DevelopmentDevelopment of of search search hits hits for for roboticsrobotics andand mobilemobile robotics robotics (All(All search search queries queries have have been been executedexecuted in in IEEE IEEE Xplore Xplore in in August August 2020.) 2020.) TheThe group group of of mobile mobile robots robots that that can can move move through through its its environment, environment, is is a a carrier carrier for for many many researchresearch topics topics within within robotics, robotics, e.g., e.g., navigation navigation or or autonomy. autonomy. Often Often researchers researchers reference reference to tothe the mobilemobile robot. robot. This This article article discussed discussed how how a atypical typicalmobile mobile robot robot could could be be described described by by answering answering thethe following following questions: questions: What What are are the the capabilities capabilities of of a a typical typical mobile mobile robot? robot? What What technologies technologies are are topicallytopically used used to to implement implement its its capabilities? capabilities? What What requirements requirements and and challenges challenges result result from from these these capabilitiescapabilities and and implementations? implementations? ThisThis research’s research’s primary primary goal goal is is to to define define a a taxonomy taxonomy of of mobile mobile robots robots that that describes describes the the classes, classes, applications,applications, capabilities, capabilities, and and implementations implementations of of a a typical typical mobile mobile robot. robot. The The definition definition of of a a taxonomy taxonomy waswas initially initially invented invented with with biology. biology. A A taxonomy taxonomy describes describes a a method method to to classify classify objects. objects. A A taxonomy taxonomy is is oftenoften used used to to put put individual individual cases cases into into a a unified unified and and more more generic generic context context to to handle handle those those cases cases with with standardstandard methods. methods. With With the the creation creation of of a a taxonomy, taxonomy, structures structures are are established established in in which which an an object object or or structurestructure can can be be sorted. sorted. This This research research uses uses taxonomy taxonomy to to define define an an archetypal archetypal mobile mobile robot, robot, whereas whereas the the indicationindication "archetypal" “archetypal” means means a a generally generally valid valid definition definition of of a a device, device, here here the the archetypal archetypal definition definition of of aa mobile mobile robot. robot. TheThe taxonomy taxonomy is is mostly mostly based based on on a a systematic systematic literature literature review, review, which which is is shown shown in in Section Section22,, includingincluding the the state state of of the the art art of of taxonomies taxonomies for for mobile mobile robots robots in in Section Section 2.22.2.. In In Section Section33 typestypes of of mobilemobile robots, robots, in in Section Section44 applications,applications, in in Section Section55 capabilities,capabilities, and and in in Section Section6 6implementationsimplementations areare analysed. analysed. The The derivation derivation of of the the taxonomy taxonomy is is shown shown in in Section Section7 before this article concludes with SectionSection8.. 2.2. Literature Literature Review Review TheThe basis basis of of the the definition definition of of a a mobile mobile robot robot is is created created by by running running a a systematic systematic literature literature reviewreview[[22,,33]].. The The first first step step in in the the literature literature review review is is the the definition definition of of search search terms. terms. Those Those search search terms terms areare created created by by reviewing reviewing references references of of three three types types of of literature. literature. Those Those references references will will be be described described brieflybriefly in in the the next next sections sections and and will will be be compared compared and and collected collected in in Tables Tables3 3and and4 4.. First, First, books books from from the the fieldfield of of robotics robotics will will be be examined examined in in Section Section 2.12.1.. Then, Then, a a selection selection of of survey survey papers papers will will be be reviewed, reviewed, whichwhich outlines outlines the the state state of of the the art art of of (mobile) (mobile) robotics robotics (see (see Section Section 2.22.2).). Last, Last, other other search search terms terms will will be be searchedsearched by by examining examining some some reference reference systems systems from from mobile mobile robotics robotics (see (see Section Section 2.32.3).). The The relevance relevance of of thethe selected selected references references are are shown shown in in Table Table1,, which which shows shows the the number number of of citations citations with with the the exception exception ofof the the referencereference systems systems wherewhere the the number number of of search search hits hits of of references references using using this this systems systems are are listed. listed. TheThe quantification quantification of of the the relevance relevance is is done done by by evaluating evaluating the the search search hits hits and and number number of of citations citations using using searchsearch engines engines for for scientific scientific references, references, namely namelyGoogleGoogle Scholar Scholar((GoogleGoogle Scholar Scholar[[44]] runs runs its its search search queries queries independentindependent from from the the publisher.) publisher.) and andIEEEIEEE Xplore Xplore.. The The selection selection of of the the survey survey papers papers and and publications publications isis not not only only done done by by pure pure number number of of citations citations and and search search hits. hits. To To minimize minimize the the chance chance to to miss miss new new or or nonnon popular popular research research terms terms within within mobile mobile robotics, robotics, a a mixture mixture of of old old to to new new and and few- few- to to often-cited often-cited Robotics 2020, 9, 109 3 of 24 references are
Recommended publications
  • Irobot Corporation Irobot Designs, Develops and Sells Robots That Make a Difference
    iRobot Corporation iRobot designs, develops and sells robots that make a difference. iRobot invests significant resources to manufacture, promote and protect its products and related intellectual property. iRobot registered trademarks are protected under U.S. and international law; iRobot reserves the right to bring action against the infringement of legally protected trademarks and products. iRobot regularly monitors the Internet, including auction sites, in order to protect its intellectual property rights. Unauthorized reselling, marketing or auctioning using iRobot copyrighted items is illegal and can result in liability for damages, criminal penalties and termination of eBay selling privileges. iRobot notifies eBay of auction listings containing unauthorized uses of iRobot copyrights and trademarks. eBay complies with iRobot's request by taking appropriate action in accordance to its user policies. This includes the removal of auctions from the eBay website that illegally offer copyrighted terms and products. Only iRobot brand products, as supplied and distributed by iRobot Corporation, and delivered as manufactured, in the carton to the original customer purchaser, is warranted by iRobot Corporation against manufacturing defects in materials and workmanship for the qualifyinglimited warranty period. iRobot Affiliate Program If you are an online retailer and want to earn commission by selling iRobot products on your website, you may opt to participate in the iRobot Affiliate Program. iRobot selects partners based on corporate guidelines and federal law. Through the iRobot Affiliate Program, Approved Affiliates may earn cash by promoting iRobot products on their website by directing consumers from your site to the iRobot Online Store. The program is free to join and easy to use.
    [Show full text]
  • Remote and Autonomous Controlled Robotic Car Based on Arduino with Real Time Obstacle Detection and Avoidance
    Universal Journal of Engineering Science 7(1): 1-7, 2019 http://www.hrpub.org DOI: 10.13189/ujes.2019.070101 Remote and Autonomous Controlled Robotic Car based on Arduino with Real Time Obstacle Detection and Avoidance Esra Yılmaz, Sibel T. Özyer* Department of Computer Engineering, Çankaya University, Turkey Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract In robotic car, real time obstacle detection electronic devices. The environment can be any physical and obstacle avoidance are significant issues. In this study, environment such as military areas, airports, factories, design and implementation of a robotic car have been hospitals, shopping malls, and electronic devices can be presented with regards to hardware, software and smartphones, robots, tablets, smart clocks. These devices communication environments with real time obstacle have a wide range of applications to control, protect, image detection and obstacle avoidance. Arduino platform, and identification in the industrial process. Today, there are android application and Bluetooth technology have been hundreds of types of sensors produced by the development used to implementation of the system. In this paper, robotic of technology such as heat, pressure, obstacle recognizer, car design and application with using sensor programming human detecting. Sensors were used for lighting purposes on a platform has been presented. This robotic device has in the past, but now they are used to make life easier. been developed with the interaction of Android-based Thanks to technology in the field of electronics, incredibly device.
    [Show full text]
  • Global Inventory of AUV and Glider Technology Available for Routine Marine Surveying
    Appendix 1. Global Inventory of AUVs and Gliders Global Inventory of AUV and Glider Technology available for Routine Marine Surveying Project Leaders: Dr Russell Wynn (NOC) and Dr Elizabeth Linley (NERC) Report Prepared by: Dr James Hunt (NOC) Inventory correct as of September 2013 1 Return to Contents Appendix 1. Global Inventory of AUVs and Gliders Contents United Kingdom Institutes ................................................................. 16 Marine Autonomous and Robotic Systems (MARS) at National Oceanography Centre (NOC), Southampton ................................. 17 Autonomous Underwater Vehicles (AUVs) at MARS ................................... 18 Autosub3 ...................................................................................................... 18 Technical Specification for Autosub3 ......................................................... 18 Autosub6000 ................................................................................................ 19 Technical Specification .............................................................................. 19 Autosub LR ...................................................................................................... 20 Technical Specification .............................................................................. 20 Air-Launched AUVs ........................................................................................ 21 Gliders at MARS .............................................................................................. 22 Teledyne
    [Show full text]
  • Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E
    Housewives or Technophiles?: Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E. Grinter1, Henrik I. Christensen1, Lan Guo2 1 Center for Robotics and Intelligent Machines 2Siemens Medical Solutions Inc. Georgia Institute of Technology 51 Valley Stream Pkwy 85 5th Street, Atlanta GA 30332 USA Malvern, PA 19355 USA {jsung, beki,hic}@cc.gatech.edu [email protected] ABSTRACT Roomba users. Among other domestic robots that serve household Despite the growing body of Human-Robot Interaction (HRI) tasks, such as Scooba, Robomower and Dressman, we selected research focused on domestic robots, surprisingly little is known Roomba for three main reasons. First, Roomba have been very about the demographic profile of robot owners and their influence successful in the United States and that gave us wide accessibility on usage patterns. In this paper, we present the results of a survey to Roomba owners making it easier to recruit a large sample size. of 379 iRobot’s Roomba owners, that identified their Second, Roomba is one of the longest available domestic robots, demographic and usage trends. The outcome of the survey and we hypothesize that its adoption may have gone beyond suggests that Roomba users are equally likely to be men or “early adopters” or leading users, allowing us to capture a broader women, and they tend to be younger with high levels of education range of experiences. Third, and most importantly, Roomba is an and technical backgrounds. Their adoption and use patterns exemplary case for understanding how householders respond to illustrate the important role that gift exchange plays in adoption, robotic products that replace blue-collar work in the home, which and how the robot changes cleaning routines and creates non- some researchers believe to be the future of home robotic cleaning activities.
    [Show full text]
  • Human to Robot Whole-Body Motion Transfer
    Human to Robot Whole-Body Motion Transfer Miguel Arduengo1, Ana Arduengo1, Adria` Colome´1, Joan Lobo-Prat1 and Carme Torras1 Abstract— Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interac- tion are crucial steps towards automating complex manipu- lation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspon- dence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. Fig. 1. Transferring human motion to robots while ensuring safe human- This constitutes an easy way for a non-expert to transfer a robot physical interaction can be a powerful and intuitive tool for teaching assistive tasks such as helping people with reduced mobility to get dressed. manipulation skill to an assistive robot. The classical approach for human motion transfer is I. INTRODUCTION kinesthetic teaching. The teacher holds the robot along the Service robots may assist people at home in the future. trajectories to be followed to accomplish a specific task, However, robotic systems still face several challenges in while the robot does gravity compensation [6].
    [Show full text]
  • AUV Adaptive Sampling Methods: a Review
    applied sciences Review AUV Adaptive Sampling Methods: A Review Jimin Hwang 1 , Neil Bose 2 and Shuangshuang Fan 3,* 1 Australian Maritime College, University of Tasmania, Launceston 7250, TAS, Australia; [email protected] 2 Department of Ocean and Naval Architectural Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; [email protected] 3 School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China * Correspondence: [email protected] Received: 16 July 2019; Accepted: 29 July 2019; Published: 2 August 2019 Abstract: Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed. Keywords: autonomous underwater vehicle(s); maritime robotics; adaptive sampling; underwater feature tracking; in-situ sensors; sensor fusion 1. Introduction Autonomous underwater vehicles (AUVs) are unmanned marine robots. Owing to their mobility and increased ability to accommodate sensors, they have been used for a broad range of oceanographic missions, such as surveying underwater plumes and other phenomena, collecting bathymetric data and tracking oceanographic dynamic features.
    [Show full text]
  • Sharkninja V Irobot Corporation IPR2020-00734
    [email protected] Paper No. 11 571-272-7822 Entered: October 6, 2020 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD SHARKNINJA OPERATING LLC, SHARKNINJA MANAGEMENT LLC, AND SHARKNINJA SALES COMPANY, Petitioner, v. IROBOT CORPORATION, Patent Owner. IPR2020-00734 Patent 9,921,586 B2 Before TERRENCE W. McMILLIN, AMANDA F. WIEKER, and JASON W. MELVIN, Administrative Patent Judges. MELVIN, Administrative Patent Judge. DECISION Granting Institution of Inter Partes Review 35 U.S.C. § 314 IPR2020-00734 Patent 9,921,586 B2 I. INTRODUCTION SharkNinja Operating LLC, SharkNinja Management LLC, and SharkNinja Sales Company (“Petitioner”) filed a Petition (Paper 1, “Pet.”) requesting institution of inter partes review of claims 1–19 of U.S. Patent No. 9,921,586 B2 (Ex. 1001, “the ’586 patent”). iRobot Corporation (“Patent Owner”) filed a Preliminary Response. Paper 6. After our email authorization, Petitioner filed a Preliminary Reply (Paper 7) and Patent Owner filed a Preliminary Sur-Reply (Paper 9). Pursuant to 35 U.S.C. § 314 and 37 C.F.R. § 42.4(a), we have authority to determine whether to institute review. An inter partes review may not be instituted unless “the information presented in the petition . and any response . shows that there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition.” 35 U.S.C. § 314(a). For the reasons set forth below, we conclude that Petitioner has shown a reasonable likelihood it will prevail in establishing the unpatentability of at least one challenged claim, and we institute inter partes review.
    [Show full text]
  • Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing
    Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing Karl J. Muecke and Dennis W. Hong RoMeLa: Robotics and Mechanisms Lab Virginia Tech Blacksburg, VA 24061 [email protected], [email protected] Abstract This paper describes the development of a fully autonomous humanoid robot for locomotion research and as the first US entry in to RoboCup. DARwIn (Dynamic Anthropomorphic Robot with Intelligence) is a humanoid robot capable of bipedal walking and performing human like motions. As the years have progressed, DARwIn has evolved from a concept to a sophisticated robot platform. DARwIn 0 was a feasibility study that investigated the possibility of making a humanoid robot walk. Its successor, DARwIn I, was a design study that investigated how to create a humanoid robot with human proportions, range of motion, and kinematic structure. DARwIn IIa built on the name ªhumanoidº by adding autonomy. DARwIn IIb improved on its predecessor by adding more powerful actuators and modular computing components. Finally, DARwIn III is designed to take the best of all the designs and incorporate the robot's most advanced motion control yet. Introduction Dynamic Anthropomorphic Robot with Intelligence (DARwIn), a humanoid robot, is a sophisticated hardware platform used for studying bipedal gaits that has evolved over time. Five versions of DARwIn have been developed, each an improvement on its predecessor. The first version, DARwIn 0 (Figure 1a), was used as a design study to determine the feasibility of creating a humanoid robot abd for actuator evaluation. The second version, DARwIn I (Figure 1b), used improved gaits and software.
    [Show full text]
  • Executive Summary World Robotics 2019 Service Robots 11
    Executive Summary World Robotics 2019 Service Robots 11 Executive Summary World Robotics 2019 Service Robots Service robotics encompasses a broad field of applications, most of which having unique designs and different degrees of automation – from full tele-operation to fully autonomous operation. Hence, the industry is more diverse than the industrial robot industry (which is extensively treated in the companion publication World Robotics – Industrial Robots 2019). IFR Statistical Department is currently aware of more than 750 companies producing service robots or doing commercial research for marketable products. A full list is included in chapter 4 of World Robotics Service Robots 2019. IFR Statistical Department is continuously seeking for new service robot producers, so please contact [email protected] if you represent such a company and would like to participate in the annual survey conducted in the first quarter of each year. Participants receive the survey results free of charge. Sales of professional service robots on the rise The total number of professional service robots sold in 2018 rose by 61% to more than 271,000 units, up from roughly 168,000 in 2017. The sales value increased by 32% to USD 9.2 billion. Autonomous guided vehicles (AGVs) represent the largest fraction in the professional service robot market (41% of all units sold). They are established in non-manufacturing environments, mainly logistics, and have lots of potential in manufacturing. The second largest category (39% of all units sold), inspection and maintenance robots, covers a wide range of robots from rather low-priced standard units to expensive custom solutions. Service robots for defense applications accounted for 5% of the total number of service robots for professional use sold in 2018.
    [Show full text]
  • Autonomous Mobile Robots Annual Report 1985
    The Mobile Robot Laboratory Sonar Mapping, Imaging and Navigation Visual Navigation Road Following i Motion Control The Robots Motivation Publications Autonomous Mobile Robots Annual Report 1985 Mobile Robot Laboratory CM U-KI-TK-86-4 Mobile Robot Laboratory The Robotics Institute Carncgie Mcllon University Pittsburgh, Pcnnsylvania 15213 February 1985 Copyright @ 1986 Carnegie-Mellon University This rcscarch was sponsored by The Office of Naval Research, under Contract Number NO00 14-81-K-0503. 1 Table of Contents The Mobile Robot Laboratory ‘I’owards Autonomous Vchiclcs - Moravcc ct 31. 1 Sonar Mapping, Imaging and Navigation High Resolution Maps from Wide Angle Sonar - Moravec, et al. 19 A Sonar-Based Mapping and Navigation System - Elfes 25 Three-Dirncnsional Imaging with Cheap Sonar - Moravec 31 Visual Navigation Experiments and Thoughts on Visual Navigation - Thorpe et al. 35 Path Relaxation: Path Planning for a Mobile Robot - Thorpe 39 Uncertainty Handling in 3-D Stereo Navigation - Matthies 43 Road Following First Resu!ts in Robot Road Following - Wallace et al. 65 A Modified Hough Transform for Lines - Wallace 73 Progress in Robot Road Following - Wallace et al. 77 Motion Control Pulse-Width Modulation Control of Brushless DC Motors - Muir et al. 85 Kinematic Modelling of Wheeled Mobile Robots - Muir et al. 93 Dynamic Trajectories for Mobile Robots - Shin 111 The Robots The Neptune Mobile Robot - Podnar 123 The Uranus Mobile Robot, a First Look - Podnar 127 Motivation Robots that Rove - Moravec 131 Bibliography 147 ii Abstract Sincc 13s 1. (lic Mobilc I<obot IAoratory of thc Kohotics Institute 01' Crrrncfiic-Mcllon IInivcnity has conduclcd hsic rcscarcli in aTCiiS crucial fur ;iiitonomoiis robots.
    [Show full text]
  • The Autonomous Underwater Vehicle Initiative – Project Mako
    Published at: 2004 IEEE Conference on Robotics, Automation, and Mechatronics (IEEE-RAM), Dec. 2004, Singapore, pp. 446-451 (6) The Autonomous Underwater Vehicle Initiative – Project Mako Thomas Bräunl, Adrian Boeing, Louis Gonzales, Andreas Koestler, Minh Nguyen, Joshua Petitt The University of Western Australia EECE – CIIPS – Mobile Robot Lab Crawley, Perth, Western Australia [email protected] Abstract—We present the design of an autonomous underwater vehicle and a simulation system for AUVs as part II. AUV COMPETITION of the initiative for establishing a new international The AUV Competition will comprise two different competition for autonomous underwater vehicles, both streams with similar tasks physical and simulated. This paper describes the competition outline with sample tasks, as well as the construction of the • Physical AUV competition and AUV and the simulation platform. 1 • Simulated AUV competition Competitors have to solve the same tasks in both Keywords—autonomous underwater vehicles; simulation; streams. While teams in the physical AUV competition competition; robotics have to build their own AUV (see Chapter 3 for a description of a possible entry), the simulated AUV I. INTRODUCTION competition only requires the design of application Mobile robot research has been greatly influenced by software that runs with the SubSim AUV simulation robot competitions for over 25 years [2]. Following the system (see Chapter 4). MicroMouse Contest and numerous other robot The competition tasks anticipated for the first AUV competitions, the last decade has been dominated by robot competition (physical and simulation) to be held around soccer through the FIRA [6] and RoboCup [5] July 2005 in Perth, Western Australia, are described organizations.
    [Show full text]
  • How Humanoid Robots Influence Service Experiences and Food Consumption
    Marketing Science Institute Working Paper Series 2017 Report No. 17-125 Service Robots Rising: How Humanoid Robots Influence Service Experiences and Food Consumption Martin Mende, Maura L. Scott, Jenny van Doorn, Ilana Shanks, and Dhruv Grewal “Service Robots Rising: How Humanoid Robots Influence Service Experiences and Food Consumption” © 2017 Martin Mende, Maura L. Scott, Jenny van Doorn, Ilana Shanks, and Dhruv Grewal; Report Summary © 2017 Marketing Science Institute MSI working papers are distributed for the benefit of MSI corporate and academic members means, electronic or mechanical, without written permission. Report Summary Interactions between consumers and humanoid service robots (i.e., robots with a human-like morphology such as a face, arms, and legs) soon will be part of routine marketplace experiences, and represent a primary arena for innovation in services and shopper marketing. At the same time, it is not clear whether humanoid robots, relative to human employees, trigger positive or negative consequences for consumers and companies. Although creating robots that appear as much like humans as possible is the “holy grail” in robotics, there is a risk that consumers will respond negatively to highly human-like robots, due to the feelings of discomfort that such robots can evoke. Here, Martin Mende, Maura Scott, Jenny van Doorn, Ilana Shanks, and Dhruv Grewal investigate whether humanoid service robots (HSRs) trigger discomfort and what the consequences might be for customers’ service experiences. They focus on the effects of HSRs in a food consumption context. Six experimental studies, conducted in the context of restaurant services, reveal that consumers report lower assessments of the server when their food is served by a humanoid service robot than by a human server, but their desire for food and their actual food consumption increases.
    [Show full text]