Klodian Coko Jean Perrin and the Philosophers' Stories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paul Langevin (1872-1946), La Relativité Et Les Quanta, Bulletin De La Société Française De Physique, N° 119, Mai 1999, 15-20
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hal-Diderot M ICHEL P ATY LANGEVIN, LA RELATIVITE ET LES QUANTA 1 Paul Langevin (1872-1946), la relativité et les quanta, Bulletin de la Société Française de Physique, n° 119, mai 1999, 15-20. Paul Langevin (1872-1946), la relativité et les quanta Michel PATY* Formation et profil scientifique: entre l'expérience et la théorie.- Les nouveaux phénomènes sur la constitution des corps et le «fondement électromagnétique de la matière» - La théorie de la relativité restreinte interprétée comme dynamique électromagnétique. Les phénomènes quantiques.- L'interprétation de la mécanique quantique.- Mémoire de Langevin. “Résumer l'œuvre de Langevin, écrivait Louis de Broglie en 1947, c'est reprendre toute l'histoire de la physique depuis cinquante ans” 1. Aussi bien telle n'est pas l'intention de cet article. Mais cette remarque de son célèbre élève est propre à rappeler d'emblée la dimension de ce physicien considérable, qui était l'une des meilleures et des plus sûres têtes pensantes de son époque, et d'ailleurs pas seulement en physique. Mais c'est à la physique que nous nous limiterons ici, et même à l'évocation d'un aspect relativement circonscrit de son histoire: comment, et en quoi, ce physicien clairvoyant et profond que fut Paul Langevin s'est-il trouvé amené à prendre sa part des renouvellements radicaux qui ont transformé la physique au début du XXè siècle, à savoir la relativité et les quanta. Il nous faut commencer par rappeler quelques éléments de sa biographie, et surtout de sa formation2. -
A Tribute to Jean Perrin
A TRIBUTE TO JEAN PERRIN l Henk Kubbinga – University of Groningen (The Netherlands) – DOI: 10.1051/epn/2013502 Nineteenth century's physics was primarily a molecular physics in the style of Laplace. Maxwell had been guided by Laplace’s breathtaking nebular hypothesis and its consequences for Saturn. Somewhat later Van der Waals drew upon his analysis of capillarity. The many textbooks of Biot perpetuated the molecularism involved in all this. Jean Perrin, then, proposed a charmingly simple proof for the well-foundedness of the molecular theory (1908). 16 EPN 44/5 Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2013502 JEAN PERRIN FEATURES ean [Baptiste] Perrin enrolled in 1891 at the Ecole and Robert Koch and fancied a state of science in which b P.16: Normale Supérieure de Paris, the nursery of France’s the microscope had not yet been invented. In such a situ- Saturn (with Titan) edge-on as viewed academic staff. The new ‘normalien’ came from Lyon ation Pasteur and Koch—let’s say, medical science in by the Hubble and had passed a typically French parcours: primary general—might have concluded all the same that con- Telescope (2012; Jschool and collège ‘en province’, lycée at Paris. The ‘nor- tagious diseases were caused by invisibly small living courtesy: NASA). maliens’ of the time were left-winged politically, but wore beings which infect a victim and set out immediately to uniforms, though, and despised their Sorbonne fellow multiply, before attacking subsequent victims etc. Effec- students. Mathematics made the difference; Perrin had tive countermeasures might have been developed in that passed without any trouble. -
Sur Ma Généalogie Scientifique Française
Sur ma g´en´ealogie scientifique fran¸caise Didier Henrion Octobre 2010 1 Motivation Durant l'´et´e2010 j'ai effectu´equelques recherches sur ma g´en´ealogiescientifique, afin de compl´eterla base de donn´ees[Mathematics Genealogy Project]. Dans ce document j'ai regroup´equelques informations sur le profil des scientifiques constituant ma branche g´en´ealogiquefran¸caise. Le 12 octobre 1999 j'ai obtenu ma th`esede doctorat fran¸caise[Henrion, 1999] de l'Institut National des Sciences Appliqu´ees(INSA) de Toulouse, devant un jury constitu´ede Christian Burgat (pr´esident), Luc Dugard, Michel Malabre (rapporteurs), Jacques Bernussou, Vladim´ırKuˇcera,Bernard Pradin (examinateurs) et Sophie Tar- bouriech (directrice de th`ese).Les travaux de th`esecombinaient des r´esultatsd'automatique dans la lign´ee des travaux d'Aleksandr Lyapunov (chercheur russe du d´ebutdu XX`emesi`ecle,contemporain d'Henri Poin- car´e,et pr´ecurseurde l'´etudedes syst`emesdynamiques), pour ´etudierla stabilit´ede syst`emeslin´eairesdont les actionneurs saturent, et des r´esultatsd'optimisation convexe et de math´ematiquesappliqu´ees,concernant les in´egalit´esmatricielles lin´eaires,particuli`erement adapt´ees`ala commande des syst`emesen pr´esenced'incertitudes param´etriqueset de mod´elisation. On notera la pr´esencedans le jury de th`esede Bernard Pradin, alors professeur d'automatique `al'INSA de Toulouse. Ses cours, ainsi que ceux de Germain Garcia, Christian Mira et Andr´eTitli, sont `al'origine de ma vocation. En 1998 j'ai ´egalement obtenu un doctorat de l'Acad´emiedes Sciences de la R´epubliqueTch`eque,mais je compte d´ecrirema g´en´ealogietch`equedans un autre document. -
The Discovery of Subatomic Particles
The Discovery of Subatomic Particles Steven Weinberg I. W. H . Freeman and Co mpa ny NE W Y ORK Staff and students at the Cavendish Laboratory, 1933 . Fourth row: J. K. Roberts, P. Harteck, R. C. Evans, E. C. Childs, R. A. Smith, Top row: W. ]. Henderson , W. E. Dun canson, P. Wright, G. E. Pringle, H. Miller. G. T. P. Tarr ant , L. H. Gray, j . P. Gort, M. L. Oliphant , P. I. Dee, ]. L. Pawsey, Second row: C. B. O. Mohr, N. Feath er, C. W. Gilbert , D.Shoenberg, D. E. Lea, C. £. Wynn-Williams. R. Witty, - -Halliday, H . S. W. Massey, E.S. Shire. Seated row: - - Sparshotr, J. A.Ratcliffe, G. Stead, J. Chadwick, G. F. C. Searle, Third row : B. B. Kinsey, F. W. Nicoll, G. Occhialini, E. C. Allberry, B. M. Crowt her, Professor Sir J. J. Thomson, Professo r Lord Ruth erford, Professor C. T. R. Wilson, B. V. Bowden, W. B. Lewis, P. C. Ho, E. T. S. Walton, P. W. Burbidge, F. Bitter. C. D. Ellis, Professor Kapirza, P. M. S. Blackett , - - Davies. 13 2 The Discovery of the Electron This century has seen the gradual realization that all matter is composed of a' f~w type s of elementary particles-tiny units that apparently cannot be subdi vided further. The list of elementary particle types has changed many times dunng the century, as new particles have been discovered and old ones have been found to be composed of more elementary constituents. At latest count there are some sixteen known types of elementary particles. -
November 2019
A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September. -
Avogadro's Constant
Avogadro's Constant Nancy Eisenmenger Question Artem, 8th grade How \Avogadro constant" was invented and how scientists calculated it for the first time? Answer What is Avogadro's Constant? • Avogadros constant, NA: the number of particles in a mole • mole: The number of Carbon-12 atoms in 0.012 kg of Carbon-12 23 −1 • NA = 6:02214129(27) × 10 mol How was Avogadro's Constant Invented? Avogadro's constant was invented because scientists were learning about measuring matter and wanted a way to relate the microscopic to the macroscopic (e.g. how many particles (atoms, molecules, etc.) were in a sample of matter). The first scientists to see a need for Avogadro's constant were studying gases and how they behave under different temperatures and pressures. Amedeo Avogadro did not invent the constant, but he did state that all gases with the same volume, pressure, and temperature contained the same number of gas particles, which turned out to be very important to the development of our understanding of the principles of chemistry and physics. The constant was first calculated by Johann Josef Loschmidt, a German scientist, in 1865. He actually calculated the Loschmidt number, a constant that measures the same thing as Avogadro's number, but in different units (ideal gas particles per cubic meter at 0◦C and 1 atm). When converted to the same units, his number was off by about a factor of 10 from Avogadro's number. That may sound like a lot, but given the tools he had to work with for both theory and experiment and the magnitude of the number (∼ 1023), that is an impressively close estimate. -
Léon Brillouin (1889-1969) Claude Fabre
Léon Brillouin (1889-1969) Claude Fabre To cite this version: Claude Fabre. Léon Brillouin (1889-1969). Photoniques, EDP Sciences, 2021, pp.21-23. 10.1051/pho- ton/202110819. hal-03273152 HAL Id: hal-03273152 https://hal.archives-ouvertes.fr/hal-03273152 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LÉN O BRILLOUIN BIOGRAPHIE Léon Brillouin (1889-1969) Claude Fabre Laboratoire Kastler Brossel, Sorbonne Université, ENS, CNRS, Collège de France, Campus Pierre et Marie Curie, 75005 Paris, France [email protected] Léon Brillouin a été durant toute sa carrière au cœur des développements de la nouvelle physique quantique. Il lui a apporté des contributions majeures et originales, notamment en physique du solide. Il a participé à l’émergence d’une nouvelle discipline scientifique : l’informatique. © sevres-92310.fr https://doi.org/10.1051/photon/202110819 Article publié en accès libre sous les conditions définies par la licence Creative Commons Attribution License CC-BY (https://creativecommons.org/licenses/by/4.0), qui autorise sans restrictions l’utilisation, la diffusion, et la reproduction sur quelque support que ce soit, sous réserve de citation correcte de la publication originale. -
Rethinking 'Classical Physics'
This is a repository copy of Rethinking 'Classical Physics'. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/95198/ Version: Accepted Version Book Section: Gooday, G and Mitchell, D (2013) Rethinking 'Classical Physics'. In: Buchwald, JZ and Fox, R, (eds.) Oxford Handbook of the History of Physics. Oxford University Press , Oxford, UK; New York, NY, USA , pp. 721-764. ISBN 9780199696253 © Oxford University Press 2013. This is an author produced version of a chapter published in The Oxford Handbook of the History of Physics. Reproduced by permission of Oxford University Press. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Rethinking ‘Classical Physics’ Graeme Gooday (Leeds) & Daniel Mitchell (Hong Kong) Chapter for Robert Fox & Jed Buchwald, editors Oxford Handbook of the History of Physics (Oxford University Press, in preparation) What is ‘classical physics’? Physicists have typically treated it as a useful and unproblematic category to characterize their discipline from Newton until the advent of ‘modern physics’ in the early twentieth century. -
Lesson 37: Thomson's Plum Pudding Model
Lesson 37: Thomson's Plum Pudding Model Remember back in Lesson 18 when we looked at trapping moving particles in a circular path using a magnetic field? • In this lesson we look at how using this type of set up eventually helped physicists start to figure out the nature of the atom. Early Theories about Atoms In 1803 John Dalton presented his theory that the elements of the periodic table were made of atoms. • The main reason he was proposing this idea was to be able to explain the chemistry that he was studying. • Dalton believed that atoms were solid pieces of matter that could not be broken down any further. ◦ This is why his model is often referred to as the Solid Sphere Model. • Although Dalton's model was able to explain the way he saw chemical reactions working, he was unable to really prove that matter was made up of these atoms, or how chemical bonding could happen between them. During the late 1800's experiments with cathode ray tubes (CRTs) were starting to The negative give the first glimpses into what an atom might be. electrode is referred ● A cathode ray tube is just a vacuum tube with two electrodes at the ends. to as the cathode. That's the reason ○ When a really high voltage is applied, mysterious “cathode rays” this is called a moved from the negative electrode to the positive electrode. cathode ray tube. ○ Sometimes you could see a glow at the opposite end of the tube when the tube was turned on. ● William Crookes used a really high quality cathode ray tube in 1885. -
The Exact Sciences Michel Paty
The Exact Sciences Michel Paty To cite this version: Michel Paty. The Exact Sciences. Kritzman, Lawrence. The Columbia History of Twentieth Century French Thought, Columbia University Press, New York, p. 205-212, 2006. halshs-00182767 HAL Id: halshs-00182767 https://halshs.archives-ouvertes.fr/halshs-00182767 Submitted on 27 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The Exact Sciences (Translated from french by Malcolm DeBevoise), in Kritzman, Lawrence (eds.), The Columbia History of Twentieth Century French Thought, Columbia University Press, New York, 2006, p. 205-212. The Exact Sciences Michel Paty Three periods may be distinguished in the development of scientific research and teaching in France during the twentieth century: the years prior to 1914; the interwar period; and the balance of the century, from 1945. Despite the very different circumstances that prevailed during these periods, a certain structural continuity has persisted until the present day and given the development of the exact sciences in France its distinctive character. The current system of schools and universitiespublic, secular, free, and open to all on the basis of meritwas devised by the Third Republic as a means of satisfying the fundamental condition of a modern democracy: the education of its citizens and the training of elites. -
Nobel Prizes in Physics Closely Connected with the Physics of Solids
Nobel Prizes in Physics Closely Connected with the Physics of Solids 1901 Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable rays subsequently named after him 1909 Guglielmo Marconi, London, and Ferdinand Braun, Strassburg, for their contributions to the development of wireless telegraphy 1913 Heike Kamerlingh Onnes, Leiden, for his investigations on the properties of matter at low temperatures which lead, inter alia, to the production of liquid helium 1914 Max von Laue, Frankfort/Main, for his discovery of the diffraction of X-rays by crystals 1915 William Henry Bragg, London, and William Lawrence Bragg, Manchester, for their analysis of crystal structure by means of X-rays 1918 Max Planck, Berlin, in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta 1920 Charles Edouard Guillaume, Sèvres, in recognition of the service he has rendered to precise measurements in Physics by his discovery of anoma- lies in nickel steel alloys 1921 Albert Einstein, Berlin, for services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect 1923 Robert Andrews Millikan, Pasadena, California, for his work on the ele- mentary charge of electricity and on the photo-electric effect 1924 Manne Siegbahn, Uppsala, for his discoveries and researches in the field of X-ray spectroscopy 1926 Jean Baptiste Perrin, Paris, for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium 1928 Owen Willans Richardson, London, for his work on the thermionic phe- nomenon and especially for his discovery of the law named after him 1929 Louis Victor de Broglie, Paris, for his discovery of the wave nature of electrons 1930 Venkata Raman, Calcutta, for his work on the scattering of light and for the discovery of the effect named after him © Springer International Publishing Switzerland 2015 199 R.P. -
The Theory of Brownian Motion: a Hundred Years’ Anniversary Paweł F
52 SPECIAL ISSUE, Spring 2006 The theory of Brownian Motion: A Hundred Years’ Anniversary Paweł F. Góra Marian Smoluchowski Institute of Physics Jagellonian University, Cracow, Poland The year 1905 was truly a miracle year, annus mirabilis, in theoretical physics. Albert Einstein published four im- portant papers that year: Two papers laying foundations for the Special Theory of Relativity, one explaining the photo- electric effect that would win Einstein the 1921 Nobel Prize in physics, and one explaining the mechanism of Brownian motion1. An independent explanation of this last phenome- non was published the following year by a Polish physicist Marian Smoluchowski2. An explanation of the origin and Marian Smoluchowski properties of Brownian motion was a solution to a nearly 80 (1872–1917) years old puzzle, a remarkable feat, but nobody expected it to be a major breakthrough that would reshape the whole physics. This was, how- ever, the case and we will try to explain why. Brownian motion takes its name after a Scottish botanist, Robert Brown. Brown was a highly respected man in his time, not, however, for the discovery that he is now famous for, but for his classification of the plants of the New World. It was during this research that Brown noticed in 1827 that pollen in water suspension which he examined in his microscope displayed a very rapid, highly irregular, zigzag motion. Such motions had been observed even prior to Brown, but only in organic molecules, and their origin was delegated to some mysterious “vital Robert Brown (1773–1858) force” characteristic of living matter. Brown was not satisfied with this explanation, which could possibly fit the living pollen.