The Exact Sciences Michel Paty
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 the Equation of a Light Leptonic Magnetic Monopole and Its
The equation of a Light Leptonic Magnetic Monopole and its Experimental Aspects Georges Lochak Fondation Louis de Broglie 23, rue Marsoulan F-75012 Paris [email protected] Abstract. The present theory is closely related to Dirac’s equation of the electron, but not to his magnetic monopole theory, except for his relation between electric and magnetic charge. The theory is based on the fact, that the massless Dirac equation admits a second electromagnetic coupling, deduced from a pseudo-scalar gauge invariance. The equation thus obtained has the symmetry laws of a massless leptonic, magnetic monopole, able to interact weakly. We give a more precise form of the Dirac relation between electric and magnetic charges and a quantum form of the Poincaré first integral. In the Weyl representation our equation splits into P-conjugated monopole and antimonopole equations with the correct electromagnetic coupling and opposite chiralities, predicted by P. Curie. Charge conjugated monopoles are symmetric in space and not in time (contrary to the electric particles) : an important fact for the vacuum polarization. Our monopole is a magnetically excited neutrino, which leads to experimental consequences. These monopoles are assumed to be produced by electromagnetic pulses or arcs, leading to nuclear transmutations and, for beta radioactive elements, a shortening of the life time and the emission of monopoles instead of neutrinos in a magnetic field. A corresponding discussion is given in section 15. 1. Introduction. The hypothesis of separated magnetic poles is very old. In the 2nd volume of his famous Treatise of Electricity and Magnetism [1], devoted to Magnetism, Maxwell considered the existence of free magnetic charges as an evidence, just as the evidence of electric charges. -
Des Origines Du Programme Nucléaire Français À Nos Jours
Résistance et Dissuasion Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des origines du programme nucléaire français à nos jours EXPOSITION Résistance et Dissuasion Des origines du programme nucléaire français à nos jours © D.R. – ECPAD/Défense / Archives historiques CEA / Archives © D.R. – ECPAD/Défense Résistance et Dissuasion Des origines du programme nucléaire français à nos jours LE RÔLE PIONNIER DE LA FRANCE DANS LE DOMAINE DE L’éNERGIE NUCLÉAIRE De la découverte de la radioactivité naturelle à celle de la radioactivité artificielle Extrait du discours de réception du prix Nobel de physique, le 6 juin 1905, par Pierre Curie « (…) On peut concevoir encore que dans des mains criminelles le radium puisse devenir très dangereux, ès la fin du XIXe siècle, la France exerce un rôle majeur dans la Ci-dessus : Henri Becquerel dans son laboratoire, 1903 – D.R. et ici on peut se demander si l’humanité a avantage découverte de l’énergie atomique. C’est ainsi que le physicien Henri à connaître les secrets de la nature, si elle est mûre Becquerel découvre en 1896 le rayonnement émis par les sels À gauche : Pierre et Marie Curie dans leur laboratoire, vers 1898 pour en profiter ou si cette connaissance ne lui sera D Musée Curie (coll. ACJC) d’uranium ; c’est une découverte considérable car il vient de mettre en pas nuisible. Ci-dessous : Frédéric Joliot et Irène Curie dans leur laboratoire, évidence le phénomène de la radioactivité naturelle. L’étape suivante vers 1934 – Musée Curie (coll. -
Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status. -
Stanisław Zaremba
Danuta Ciesielska*, Krzysztof Ciesielski** Instytut Historii Nauki im. L. i A. Birkenmajerów, PAN Warszawa Instytut Matematyki, Wydział Matematyki i Informatyki, UJ Kraków SSW B (1–192) O DLO K KRTKIE PRZEDSTAWIENIE POLSKIEJ I KRAKOWSKIEJ MATEMATYKI DO POCZTKW XX WIEKU Znaczący rozwój matematyki na świecie datuje się na drugą połowę drugiego tysiąclecia n.e.; przez poprzedzające go półtora tysiąclecia uzyskiwane wyniki były skromne w porównaniu z tym, co uzyskano później. Jednakże do początku XX wieku Polska była z dala od europejskiej, a tym bardziej światowej czołówki. Potęgami ma- tematycznymi były Francja i Niemcy. Ważne rezultaty osiągano w Wielkiej Brytanii i we Włoszech. Sporadycznie pojawiali się słynni matematycy także w innych krajach, jednak w podręcznikach historii matematyki trudno znaleźć wśród nich Polaków. Od XIV wieku Polska miała się czym poszczycić naukowo. Akademia Krakow- ska była drugim uniwersytetem powstałym w środkowej Europie, od początku wy- kładano tu przedmioty kojarzone z matematyką. Na początku XV wieku krakowski mieszczanin Jan Stobner ufundował specjalną katedrę matematyki i astronomii; druga katedra związana z matematyką została ufundowana przez Marcina Króla z Żurawi- cy (ok.1422–ok.1460), pół wieku później. Był to jednak okres istotnie poprzedzający czasy większych osiągnięć matematycznych. Pewne osiągnięcia matematyczne miał ponad wiek później Mikołaj Kopernik (1473–1543), jego nazwisko kojarzone jest jed- nak (oczywiście słusznie) głównie z astronomią. Dopiero w XVII wieku pojawił się w Krakowie matematyk europejskiego formatu – Joannes Broscius (1585–1652; Jan Brożek, znany też jako Brzozek). Był nie tylko mate- matykiem, ale też flozofem, astronomem, teologiem, lekarzem i historykiem nauki. Ma on na swoim koncie znaczące osiągnięcia, głównie związane są z teorią liczb. -
A Century of X-Ray Crystallography and 2014 International Year of X-Ray Crystallography
Macedonian Journal of Chemistry and Chemical Engineering, Vol. 34, No. 1, pp. 19–32 (2015) MJCCA9 – 658 ISSN 1857-5552 Received: January 15, 2015 UDC: 631.416.865(497.7:282) Accepted: February 13, 2015 Review A CENTURY OF X-RAY CRYSTALLOGRAPHY AND 2014 INTERNATIONAL YEAR OF X-RAY CRYSTALLOGRAPHY Biserka Kojić-Prodić Rudjer Bošković Institute, Bijenička c. 54, Zagreb, Croatia [email protected] The 100th anniversary of the Nobel prize awarded to Max von Laue in 1914 for his discovery of diffraction of X-rays on a crystal marked the beginning of a new branch of science - X-ray crystallog- raphy. The experimental evidence of von Laue's discovery was provided by physicists W. Friedrich and P. Knipping in 1912. In the same year, W. L. Bragg described the analogy between X-rays and visible light and formulated the Bragg's law, a fundamental relation that connected the wave nature of X-rays and fine structure of a crystal at atomic level. In 1913 the first simple diffractometer was constructed and structure determination started by the Braggs, father and son. In 1915 their discoveries were acknowl- edged by a Nobel Prize in physics. Since then, X-ray diffraction has been the basic method for determina- tion of three-dimensional structures of synthetic and natural compounds. The three-dimensional structure of a substances defines its physical, chemical, and biological properties. Over the past century the signifi- cance of X-ray crystallography has been recognized by about forty Nobel prizes. X-ray structure analysis of simple crystals of rock salt, diamond and graphite, and later of complex biomolecules such as B12- vitamin, penicillin, haemoglobin/myoglobin, DNA, and biomolecular complexes such as viruses, chroma- tin, ribozyme, and other molecular machines have illustrated the development of the method. -
Paul Langevin (1872-1946), La Relativité Et Les Quanta, Bulletin De La Société Française De Physique, N° 119, Mai 1999, 15-20
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hal-Diderot M ICHEL P ATY LANGEVIN, LA RELATIVITE ET LES QUANTA 1 Paul Langevin (1872-1946), la relativité et les quanta, Bulletin de la Société Française de Physique, n° 119, mai 1999, 15-20. Paul Langevin (1872-1946), la relativité et les quanta Michel PATY* Formation et profil scientifique: entre l'expérience et la théorie.- Les nouveaux phénomènes sur la constitution des corps et le «fondement électromagnétique de la matière» - La théorie de la relativité restreinte interprétée comme dynamique électromagnétique. Les phénomènes quantiques.- L'interprétation de la mécanique quantique.- Mémoire de Langevin. “Résumer l'œuvre de Langevin, écrivait Louis de Broglie en 1947, c'est reprendre toute l'histoire de la physique depuis cinquante ans” 1. Aussi bien telle n'est pas l'intention de cet article. Mais cette remarque de son célèbre élève est propre à rappeler d'emblée la dimension de ce physicien considérable, qui était l'une des meilleures et des plus sûres têtes pensantes de son époque, et d'ailleurs pas seulement en physique. Mais c'est à la physique que nous nous limiterons ici, et même à l'évocation d'un aspect relativement circonscrit de son histoire: comment, et en quoi, ce physicien clairvoyant et profond que fut Paul Langevin s'est-il trouvé amené à prendre sa part des renouvellements radicaux qui ont transformé la physique au début du XXè siècle, à savoir la relativité et les quanta. Il nous faut commencer par rappeler quelques éléments de sa biographie, et surtout de sa formation2. -
Robert De Montessus De Ballore's 1902 Theorem on Algebraic
Robert de Montessus de Ballore’s 1902 theorem on algebraic continued fractions : genesis and circulation Hervé Le Ferrand ∗ October 31, 2018 Abstract Robert de Montessus de Ballore proved in 1902 his famous theorem on the convergence of Padé approximants of meromorphic functions. In this paper, we will first describe the genesis of the theorem, then investigate its circulation. A number of letters addressed to Robert de Montessus by different mathematicians will be quoted to help determining the scientific context and the steps that led to the result. In particular, excerpts of the correspondence with Henri Padé in the years 1901-1902 played a leading role. The large number of authors who mentioned the theorem soon after its derivation, for instance Nörlund and Perron among others, indicates a fast circulation due to factors that will be thoroughly explained. Key words Robert de Montessus, circulation of a theorem, algebraic continued fractions, Padé’s approximants. MSC : 01A55 ; 01A60 1 Introduction This paper aims to study the genesis and circulation of the theorem on convergence of algebraic continued fractions proven by the French mathematician Robert de Montessus de Ballore (1870-1937) in 1902. The main issue is the following : which factors played a role in the elaboration then the use of this new result ? Inspired by the study of Sturm’s theorem by Hourya Sinaceur [52], the scientific context of Robert de Montessus’ research will be described. Additionally, the correlation with the other topics on which he worked will be highlighted, -
Sur Ma Généalogie Scientifique Française
Sur ma g´en´ealogie scientifique fran¸caise Didier Henrion Octobre 2010 1 Motivation Durant l'´et´e2010 j'ai effectu´equelques recherches sur ma g´en´ealogiescientifique, afin de compl´eterla base de donn´ees[Mathematics Genealogy Project]. Dans ce document j'ai regroup´equelques informations sur le profil des scientifiques constituant ma branche g´en´ealogiquefran¸caise. Le 12 octobre 1999 j'ai obtenu ma th`esede doctorat fran¸caise[Henrion, 1999] de l'Institut National des Sciences Appliqu´ees(INSA) de Toulouse, devant un jury constitu´ede Christian Burgat (pr´esident), Luc Dugard, Michel Malabre (rapporteurs), Jacques Bernussou, Vladim´ırKuˇcera,Bernard Pradin (examinateurs) et Sophie Tar- bouriech (directrice de th`ese).Les travaux de th`esecombinaient des r´esultatsd'automatique dans la lign´ee des travaux d'Aleksandr Lyapunov (chercheur russe du d´ebutdu XX`emesi`ecle,contemporain d'Henri Poin- car´e,et pr´ecurseurde l'´etudedes syst`emesdynamiques), pour ´etudierla stabilit´ede syst`emeslin´eairesdont les actionneurs saturent, et des r´esultatsd'optimisation convexe et de math´ematiquesappliqu´ees,concernant les in´egalit´esmatricielles lin´eaires,particuli`erement adapt´ees`ala commande des syst`emesen pr´esenced'incertitudes param´etriqueset de mod´elisation. On notera la pr´esencedans le jury de th`esede Bernard Pradin, alors professeur d'automatique `al'INSA de Toulouse. Ses cours, ainsi que ceux de Germain Garcia, Christian Mira et Andr´eTitli, sont `al'origine de ma vocation. En 1998 j'ai ´egalement obtenu un doctorat de l'Acad´emiedes Sciences de la R´epubliqueTch`eque,mais je compte d´ecrirema g´en´ealogietch`equedans un autre document. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
The Mathematical Heritage of Henri Poincaré
http://dx.doi.org/10.1090/pspum/039.1 THE MATHEMATICAL HERITAGE of HENRI POINCARE PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 39, Part 1 THE MATHEMATICAL HERITAGE Of HENRI POINCARE AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 39 PROCEEDINGS OF THE SYMPOSIUM ON THE MATHEMATICAL HERITAGE OF HENRI POINCARfe HELD AT INDIANA UNIVERSITY BLOOMINGTON, INDIANA APRIL 7-10, 1980 EDITED BY FELIX E. BROWDER Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-22916 1980 Mathematics Subject Classification. Primary 01-XX, 14-XX, 22-XX, 30-XX, 32-XX, 34-XX, 35-XX, 47-XX, 53-XX, 55-XX, 57-XX, 58-XX, 70-XX, 76-XX, 83-XX. Library of Congress Cataloging in Publication Data Main entry under title: The Mathematical Heritage of Henri Poincare\ (Proceedings of symposia in pure mathematics; v. 39, pt. 1— ) Bibliography: p. 1. Mathematics—Congresses. 2. Poincare', Henri, 1854—1912— Congresses. I. Browder, Felix E. II. Series: Proceedings of symposia in pure mathematics; v. 39, pt. 1, etc. QA1.M4266 1983 510 83-2774 ISBN 0-8218-1442-7 (set) ISBN 0-8218-1449-4 (part 2) ISBN 0-8218-1448-6 (part 1) ISSN 0082-0717 COPYING AND REPRINTING. Individual readers of this publication, and nonprofit librar• ies acting for them are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in re• views provided the customary acknowledgement of the source is given. -
November 2019
A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September. -
Introduction: Some Historical Markers
Introduction: Some historical markers The aim of this introduction is threefold. First, to give a brief account of a paper of Jacques Hadamard (1865–1963) which is at the genesis of the theory of global proper- ties of surfaces of nonpositive Gaussian curvature. Then, to make a survey of several different notions of nonpositive curvature in metric spaces, each of which axioma- tizes in its own manner an analogue of the notion of nonpositive Gaussian curvature for surfaces and more generally of nonpositive sectional curvature for Riemannian manifolds. In particular, we mention important works by Menger, Busemann and Alexandrov in this domain. Finally, the aim of the introduction is also to review some of the connections between convexity theory and the theory of nonpositive curvature, which constitute the main theme that we develop in this book. The work of Hadamard on geodesics The theory of spaces of nonpositive curvature has a long and interesting history, and it is good to look at its sources. We start with a brief review of the pioneering paper by Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques” [87]. This paper, which was written by the end of the nineteenth century (1898), can be considered as the foundational paper for the study of global properties of nonpositively curved spaces. Before that paper, Hadamard had written a paper, titled “Sur certaines propriétés des trajectoires en dynamique” (1893) [84], for which he had received the Borodin prize of the Académie des Sciences.1 The prize was given for a contest whose topic was “To improve in an important point the theory of geodesic lines”.