The Theory of Brownian Motion: a Hundred Years’ Anniversary Paweł F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scientific Contacts of Polish Physicists with Albert Einstein
The Global and the Local: The History of Science and the Cultural Integration of Europe. nd Proceedings of the 2 ICESHS (Cracow, Poland, September 6–9, 2006) / Ed. by M. Kokowski. Bronisław Średniawa * Scientific contacts of Polish physicists with Albert Einstein Abstract Scientific relations of Polish physicists, living in Poland and on emigration,with Albert Einstein, in the first half of 20th century are presented. Two Polish physicists, J. Laub and L. Infeld, were Einstein’s collaborators. The exchange of letters between M. Smoluchowski and Einstein contributed essentially to the solution of the problem of density fluctuations. S Loria, J. Kowalski, W. Natanson, M. Wolfke and L. Silberstein led scientific discussions with Einstein. Marie Skłodowska-Curie collaborated with Einstein in the Commission of Intelectual Cooperation of the Ligue of Nations. Einstein proposed scientific collaboration to M. Mathisson, but because of the breakout of the 2nd World War and Mathisson’s death their collaboration could not be realised. Contacts of Polish physicists with Einstein contributed to the development of relativity in Poland. (1) Introduction Many Polish physicists of older generation, who were active in Polish universities and abroad before the First World War or in the interwar period, had personal contacts with Einstein or exchanged letters with him. Contacts of Polish physicists with Einstein certainly inspired some Polish theoreticians to scientific work in relativity. These contacts encouraged also Polish physicists to make effort in the domain of popularization of relativity and of the progress of physics in the twenties and thirties. We can therefore say that the contacts of Polish physicists with Einstein contributed to the development of theoretical physics in Poland. -
Brownian Motion and Relativity Brownian Motion 55
54 My God, He Plays Dice! Chapter 7 Chapter Brownian Motion and Relativity Brownian Motion 55 Brownian Motion and Relativity In this chapter we describe two of Einstein’s greatest works that have little or nothing to do with his amazing and deeply puzzling theories about quantum mechanics. The first,Brownian motion, provided the first quantitative proof of the existence of atoms and molecules. The second,special relativity in his miracle year of 1905 and general relativity eleven years later, combined the ideas of space and time into a unified space-time with a non-Euclidean 7 Chapter curvature that goes beyond Newton’s theory of gravitation. Einstein’s relativity theory explained the precession of the orbit of Mercury and predicted the bending of light as it passes the sun, confirmed by Arthur Stanley Eddington in 1919. He also predicted that galaxies can act as gravitational lenses, focusing light from objects far beyond, as was confirmed in 1979. He also predicted gravitational waves, only detected in 2016, one century after Einstein wrote down the equations that explain them.. What are we to make of this man who could see things that others could not? Our thesis is that if we look very closely at the things he said, especially his doubts expressed privately to friends, today’s mysteries of quantum mechanics may be lessened. As great as Einstein’s theories of Brownian motion and relativity are, they were accepted quickly because measurements were soon made that confirmed their predictions. Moreover, contemporaries of Einstein were working on these problems. Marion Smoluchowski worked out the equation for the rate of diffusion of large particles in a liquid the year before Einstein. -
From Brownian Motion to Molecular Simulations
odeling M omputing MATHEMATICAL MODELING AND COMPUTING, Vol. 5, No. 2, pp. 99–107 (2018) M C athematical From Brownian motion to molecular simulations Rovenchak A.1, Trokhymchuk A.2 1Department for Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov Str., Lviv, 79005, Ukraine 2Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., Lviv, 79011, Ukraine (Received 21 December 2018) A brief historical overview towards the contribution of two famous Lviv scholars – Mar- ian Smoluchowski and Stanis law Ulam – to the development of modern physical science fields such as molecular modeling and computer simulations is presented and discussed in connection with recent studies carried out in Lviv universities and research institutions. Keywords: history of science, Monte Carlo simulations, molecular dynamics simula- tions, first principles ab initio simulations 2000 MSC: 01A60, 82-03, 82C40, 82D30, 60J65 UDC: 53(091), 501, 533.723, 544.77 DOI: 10.23939/mmc2018.02.099 , , , δoκε˜ι δε` αυτωι˜ ταδε´ αρχας` ε˜ιναι των˜ , , · , o´λων ατoµoυς´ κα`ι κενoν,´ τα` δ′αλλα παντα´ νενoµ´ισθαι [δoξαζεσθαι´ ] (Diogenes La¨ertius, Democritus, Vol. IX, 44) The first principles of the universe are atoms and empty space; everything else is merely thought to exist. (transl. by Robert Drew Hicks, 1925; reproduced from Wikiquote) 1. Introduction Brownian motion was discovered, most probably, in the late 18th century by a Dutch scholar Jan Ingen-Housz (1730–1799) [1] and is known after the name of a Scottish botanist Robert Brown (1773– 1858), who observed the chaotic motion of pollen grains in water [2]. -
And Nanoemulsions As Vehicles for Essential Oils: Formulation, Preparation and Stability
nanomaterials Review An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability Lucia Pavoni, Diego Romano Perinelli , Giulia Bonacucina, Marco Cespi * and Giovanni Filippo Palmieri School of Pharmacy, University of Camerino, 62032 Camerino, Italy; [email protected] (L.P.); [email protected] (D.R.P.); [email protected] (G.B.); gianfi[email protected] (G.F.P.) * Correspondence: [email protected] Received: 23 December 2019; Accepted: 10 January 2020; Published: 12 January 2020 Abstract: The interest around essential oils is constantly increasing thanks to their biological properties exploitable in several fields, from pharmaceuticals to food and agriculture. However, their widespread use and marketing are still restricted due to their poor physico-chemical properties; i.e., high volatility, thermal decomposition, low water solubility, and stability issues. At the moment, the most suitable approach to overcome such limitations is based on the development of proper formulation strategies. One of the approaches suggested to achieve this goal is the so-called encapsulation process through the preparation of aqueous nano-dispersions. Among them, micro- and nanoemulsions are the most studied thanks to the ease of formulation, handling and to their manufacturing costs. In this direction, this review intends to offer an overview of the formulation, preparation and stability parameters of micro- and nanoemulsions. Specifically, recent literature has been examined in order to define the most common practices adopted (materials and fabrication methods), highlighting their suitability and effectiveness. Finally, relevant points related to formulations, such as optimization, characterization, stability and safety, not deeply studied or clarified yet, were discussed. -
A Tribute to Jean Perrin
A TRIBUTE TO JEAN PERRIN l Henk Kubbinga – University of Groningen (The Netherlands) – DOI: 10.1051/epn/2013502 Nineteenth century's physics was primarily a molecular physics in the style of Laplace. Maxwell had been guided by Laplace’s breathtaking nebular hypothesis and its consequences for Saturn. Somewhat later Van der Waals drew upon his analysis of capillarity. The many textbooks of Biot perpetuated the molecularism involved in all this. Jean Perrin, then, proposed a charmingly simple proof for the well-foundedness of the molecular theory (1908). 16 EPN 44/5 Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2013502 JEAN PERRIN FEATURES ean [Baptiste] Perrin enrolled in 1891 at the Ecole and Robert Koch and fancied a state of science in which b P.16: Normale Supérieure de Paris, the nursery of France’s the microscope had not yet been invented. In such a situ- Saturn (with Titan) edge-on as viewed academic staff. The new ‘normalien’ came from Lyon ation Pasteur and Koch—let’s say, medical science in by the Hubble and had passed a typically French parcours: primary general—might have concluded all the same that con- Telescope (2012; Jschool and collège ‘en province’, lycée at Paris. The ‘nor- tagious diseases were caused by invisibly small living courtesy: NASA). maliens’ of the time were left-winged politically, but wore beings which infect a victim and set out immediately to uniforms, though, and despised their Sorbonne fellow multiply, before attacking subsequent victims etc. Effec- students. Mathematics made the difference; Perrin had tive countermeasures might have been developed in that passed without any trouble. -
Long Memory and Self-Similar Processes
ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques GENNADY SAMORODNITSKY Long memory and self-similar processes Tome XV, no 1 (2006), p. 107-123. <http://afst.cedram.org/item?id=AFST_2006_6_15_1_107_0> © Annales de la faculté des sciences de Toulouse Mathématiques, 2006, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse, Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XV, n◦ 1, 2006 pp. 107–123 Long memory and self-similar processes(∗) Gennady Samorodnitsky (1) ABSTRACT. — This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases. RESUM´ E.´ — Cet article est une synth`ese de r´esultats et id´ees classiques ou nouveaux surla longue m´emoire, les changements d’´echelles et l’autosimi- larit´e, `a la fois dans le cas de queues de distributions lourdes ou l´eg`eres. 1. Introduction The notion of long memory (or long range dependence) has intrigued many at least since B. -
Lewis Fry Richardson: Scientist, Visionary and Pacifist
Lett Mat Int DOI 10.1007/s40329-014-0063-z Lewis Fry Richardson: scientist, visionary and pacifist Angelo Vulpiani Ó Centro P.RI.ST.EM, Universita` Commerciale Luigi Bocconi 2014 Abstract The aim of this paper is to present the main The last of seven children in a thriving English Quaker aspects of the life of Lewis Fry Richardson and his most family, in 1898 Richardson enrolled in Durham College of important scientific contributions. Of particular importance Science, and two years later was awarded a grant to study are the seminal concepts of turbulent diffusion, turbulent at King’s College in Cambridge, where he received a cascade and self-similar processes, which led to a profound diverse education: he read physics, mathematics, chemis- transformation of the way weather forecasts, turbulent try, meteorology, botany, and psychology. At the beginning flows and, more generally, complex systems are viewed. of his career he was quite uncertain about which road to follow, but he later resolved to work in several areas, just Keywords Lewis Fry Richardson Á Weather forecasting Á like the great German scientist Helmholtz, who was a Turbulent diffusion Á Turbulent cascade Á Numerical physician and then a physicist, but following a different methods Á Fractals Á Self-similarity order. In his words, he decided ‘‘to spend the first half of my life under the strict discipline of physics, and after- Lewis Fry Richardson (1881–1953), while undeservedly wards to apply that training to researches on living things’’. little known, had a fundamental (often posthumous) role in In addition to contributing important results to meteo- twentieth-century science. -
The Discovery of Subatomic Particles
The Discovery of Subatomic Particles Steven Weinberg I. W. H . Freeman and Co mpa ny NE W Y ORK Staff and students at the Cavendish Laboratory, 1933 . Fourth row: J. K. Roberts, P. Harteck, R. C. Evans, E. C. Childs, R. A. Smith, Top row: W. ]. Henderson , W. E. Dun canson, P. Wright, G. E. Pringle, H. Miller. G. T. P. Tarr ant , L. H. Gray, j . P. Gort, M. L. Oliphant , P. I. Dee, ]. L. Pawsey, Second row: C. B. O. Mohr, N. Feath er, C. W. Gilbert , D.Shoenberg, D. E. Lea, C. £. Wynn-Williams. R. Witty, - -Halliday, H . S. W. Massey, E.S. Shire. Seated row: - - Sparshotr, J. A.Ratcliffe, G. Stead, J. Chadwick, G. F. C. Searle, Third row : B. B. Kinsey, F. W. Nicoll, G. Occhialini, E. C. Allberry, B. M. Crowt her, Professor Sir J. J. Thomson, Professo r Lord Ruth erford, Professor C. T. R. Wilson, B. V. Bowden, W. B. Lewis, P. C. Ho, E. T. S. Walton, P. W. Burbidge, F. Bitter. C. D. Ellis, Professor Kapirza, P. M. S. Blackett , - - Davies. 13 2 The Discovery of the Electron This century has seen the gradual realization that all matter is composed of a' f~w type s of elementary particles-tiny units that apparently cannot be subdi vided further. The list of elementary particle types has changed many times dunng the century, as new particles have been discovered and old ones have been found to be composed of more elementary constituents. At latest count there are some sixteen known types of elementary particles. -
Theoretical Physics in Poland Before 1939*
THEORETICAL PHYSICS IN POLAND BEFORE 1939* 1. INTRODUCTION Science, and in particular the exact sciences, is not a part of culture easily accessible to people outside a small group of experts in the given field. There is, however, at least one aspect of science - which seems not to be always duly appreciated - that can be found equally interesting and worthy of attention by both specialists and non-specialists, scientists and non-scientists. It is the history of science, of scientific institutions and of the people of science. The main goal of this work is to describe the genesis and development of theoretical physics in Poland till 1939. In the sketch presented here I begin by recalling the history of physics as a whole in Poland up to the moment when theoretical physics became a distinct field. This happened in the late 19th century. From that moment on I will focus only on theoretical physics. On its substance, I find it reasonable to split the history of physics in Poland before 1939 into the following periods: - first: up to the establishment of the Commission for National Education; - second: up to the end of the 19th century; - third: up to World War II. It is probably no coincidence that the abovementioned stages correspond roughly to the stages we find in the history of science, and of physics in particular, in the rest of the world. One may say that the first period is that of the origins of modern physics as an empirical and rational science, crowned by the works of Newton and their development in the 18th century. -
Avogadro's Constant
Avogadro's Constant Nancy Eisenmenger Question Artem, 8th grade How \Avogadro constant" was invented and how scientists calculated it for the first time? Answer What is Avogadro's Constant? • Avogadros constant, NA: the number of particles in a mole • mole: The number of Carbon-12 atoms in 0.012 kg of Carbon-12 23 −1 • NA = 6:02214129(27) × 10 mol How was Avogadro's Constant Invented? Avogadro's constant was invented because scientists were learning about measuring matter and wanted a way to relate the microscopic to the macroscopic (e.g. how many particles (atoms, molecules, etc.) were in a sample of matter). The first scientists to see a need for Avogadro's constant were studying gases and how they behave under different temperatures and pressures. Amedeo Avogadro did not invent the constant, but he did state that all gases with the same volume, pressure, and temperature contained the same number of gas particles, which turned out to be very important to the development of our understanding of the principles of chemistry and physics. The constant was first calculated by Johann Josef Loschmidt, a German scientist, in 1865. He actually calculated the Loschmidt number, a constant that measures the same thing as Avogadro's number, but in different units (ideal gas particles per cubic meter at 0◦C and 1 atm). When converted to the same units, his number was off by about a factor of 10 from Avogadro's number. That may sound like a lot, but given the tools he had to work with for both theory and experiment and the magnitude of the number (∼ 1023), that is an impressively close estimate. -
Analytic and Geometric Background of Recurrence and Non-Explosion of the Brownian Motion on Riemannian Manifolds
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 36, Number 2, Pages 135–249 S 0273-0979(99)00776-4 Article electronically published on February 19, 1999 ANALYTIC AND GEOMETRIC BACKGROUND OF RECURRENCE AND NON-EXPLOSION OF THE BROWNIAN MOTION ON RIEMANNIAN MANIFOLDS ALEXANDER GRIGOR’YAN Abstract. We provide an overview of such properties of the Brownian mo- tion on complete non-compact Riemannian manifolds as recurrence and non- explosion. It is shown that both properties have various analytic characteri- zations, in terms of the heat kernel, Green function, Liouville properties, etc. On the other hand, we consider a number of geometric conditions such as the volume growth, isoperimetric inequalities, curvature bounds, etc., which are related to recurrence and non-explosion. Contents 1. Introduction 136 Acknowledgments 141 Notation 141 2. Heat semigroup on Riemannian manifolds 142 2.1. Laplace operator of the Riemannian metric 142 2.2. Heat kernel and Brownian motion on manifolds 143 2.3. Manifolds with boundary 145 3. Model manifolds 145 3.1. Polar coordinates 145 3.2. Spherically symmetric manifolds 146 4. Some potential theory 149 4.1. Harmonic functions 149 4.2. Green function 150 4.3. Capacity 152 4.4. Massive sets 155 4.5. Hitting probabilities 159 4.6. Exterior of a compact 161 5. Equivalent definitions of recurrence 164 6. Equivalent definitions of stochastic completeness 170 7. Parabolicity and volume growth 174 7.1. Upper bounds of capacity 174 7.2. Sufficient conditions for parabolicity 177 8. Transience and isoperimetric inequalities 181 9. Non-explosion and volume growth 184 Received by the editors October 1, 1997, and, in revised form, September 2, 1998. -
A Guide to Brownian Motion and Related Stochastic Processes
Vol. 0 (0000) A guide to Brownian motion and related stochastic processes Jim Pitman and Marc Yor Dept. Statistics, University of California, 367 Evans Hall # 3860, Berkeley, CA 94720-3860, USA e-mail: [email protected] Abstract: This is a guide to the mathematical theory of Brownian mo- tion and related stochastic processes, with indications of how this theory is related to other branches of mathematics, most notably the classical the- ory of partial differential equations associated with the Laplace and heat operators, and various generalizations thereof. As a typical reader, we have in mind a student, familiar with the basic concepts of probability based on measure theory, at the level of the graduate texts of Billingsley [43] and Durrett [106], and who wants a broader perspective on the theory of Brow- nian motion and related stochastic processes than can be found in these texts. Keywords and phrases: Markov process, random walk, martingale, Gaus- sian process, L´evy process, diffusion. AMS 2000 subject classifications: Primary 60J65. Contents 1 Introduction................................. 3 1.1 History ................................ 3 1.2 Definitions............................... 4 2 BM as a limit of random walks . 5 3 BMasaGaussianprocess......................... 7 3.1 Elementarytransformations . 8 3.2 Quadratic variation . 8 3.3 Paley-Wiener integrals . 8 3.4 Brownianbridges........................... 10 3.5 FinestructureofBrownianpaths . 10 arXiv:1802.09679v1 [math.PR] 27 Feb 2018 3.6 Generalizations . 10 3.6.1 FractionalBM ........................ 10 3.6.2 L´evy’s BM . 11 3.6.3 Browniansheets ....................... 11 3.7 References............................... 11 4 BMasaMarkovprocess.......................... 12 4.1 Markovprocessesandtheirsemigroups. 12 4.2 ThestrongMarkovproperty. 14 4.3 Generators .............................