Inertial Fusion Technology Inertial Fusion Technology

Total Page:16

File Type:pdf, Size:1020Kb

Inertial Fusion Technology Inertial Fusion Technology Project Staff FY01 ICF Annual Report 4. ORGANIZATION Inertial Fusion QTYUIOP Inertial Fusion AND AFFILIATED COMPANIES Technology 4.1. INTRODUCTION GA and Schafer are an experienced, highly skilled team of scientists, engineers, and technicians to continue meeting the target support needs of the ICF Laboratories. GA is one of the leading U.S. high technology companies, engaged in diversified research and development in energy, defense, and other advanced technologies. GA was established in 1955 to explore the peaceful uses of atomic energy. Today, GA is a privately held company with approximately 1500 employees. GA has the largest and most successful fusion program in private industry, including the DIII–D tokamak magnetic fusion experiment and the ICF Target Fabrication Laboratory. GA has provided over 60 TRIGA research reactors which are being operated in over 15 countries around the world. GA is also the primary developer of gas-cooled nuclear power reactor technology in the U.S. To best serve the needs of the ICF Program, GA teamed with the Livermore, California office of Schafer Corporation. Schafer provides analysis, research, development, test and evaluation of 21st century technology applications in the emerging markets of information management, computer networking, materials science, energy, environment, defense, and space. The firm has proven expertise in numerous science and engineering disciplines. Schafer’s technical staff of 130 professionals at six principal offices constitutes a dedicated and highly trained team of experts. The GA/Schafer Team is a very capable managerial and technical team that has proven abilities in the successful performance under our contracts for the past 10 years. 4.2. STRUCTURE The GA/Schafer team is organized as the capabilities-based Division of Inertial Fusion Technology shown in Fig. 4–1. Organizations within GA that support the Division include QA, Contracts, Purchasing and Finance. The Division Director has overall responsibility for all Division and support activities. Center and Office heads report directly to the Division Director, and each Center Head has full line management responsibility for the employees and contractor personnel within his or her center as described in the sections following. General Atomics Report GA–A23852 4–1 FY01 ICF Annual Report Project Staff GA Division of Inertial Fusion Technology (Org. 493) Jill Dahlburg, Director Associate Director Richard Stephens, Chief Scientist Gottfried Besenbruch, and Head, and Head, Characterization Innovation Center for & Development Office Advanced Technology D CUSTOMER OO REL N G AT HI IO IT NS & W C E O S IM T T RESOURCES Operations Office Cryogenics PERFORMANCE/TECHNOLOGY Wayne Miller, Head Excellence Schafer Activities Center for Center for Center for Target Component Inertial Fusion Polymer Fabrication Capsule & Coatings & Fabrication Production Developments Development David Steinman, Head Keith Shillito, Head & Head, GA HED Physics James Kaae, Head Targets Developments Abbas Nikroo, Head Fig. 4–1. Program organization chart. 4–2 General Atomics Report GA–A23852 Project Staff FY01 ICF Annual Report 4.3. CENTERS 4.3.1. Program Management The Program Manager, Jill Dahlburg, is responsible for overall direction of the GA/Schafer inertial confinement fusion target component fabrication and technology development support activity, including schedules, budgets, customer relations, and the oversight of the various Centers within the Division of Inertial Fusion Technology. Jill, who received her Ph.D. in theoretical plasma physics from the College of William and Mary in May, 1985, is recognized as an authority on: high performance computing algorithms and techniques, among them pseudo-spectral, finite difference, and Boolean logic methods; simulation and advanced visualization capabilities; fluid dynamics, which includes low speed Navier-Stokes flows and also high temperature gas dynamics with equation of state and radiation transport effects, and magnetohydrodynam- ics; and, experimental data analysis, interpretation, and integration with theory from a range of detectors, sensors and diagnostic tools. Upon completion of her doctoral dissertation under the direction of Dr. David C. Montgomery, now at Dartmouth College, Dr. Dahlburg joined the civil service research staff at the Naval Research Laboratory [NRL] in June, 1985 as a computational physicist in the Laboratory for Computational Physics and Fluid Dynamics. As a member of the NRL Nike KrF Laser Program from its inception, and Head of the Laser Plasma Hydrodynamics Section for that Program, Dr. Dahlburg supervised and contributed technically to the NRL Nike effort in laser direct drive ignition and high gain pellet designs, and to the design and modeling of laboratory laser matter interaction experiments, with emphasis on the understanding of the Raleigh Taylor instability, implosion and coronal hydrodynamics, and laser beam imprinting. In particular, she spearheaded the development of RAD3D, the first three-dimensional multi- group radiation transport hydro-code appropriate for laser-plasma modeling. RAD3D has remained a premier simulation code in that field for more than a decade. In 2000, Dr. Dahlburg joined the Tactical Electronic Warfare Division [TEWD] of NRL, as Head of the Distributed Sensor Technology Office. From that Office, reporting to Dr. John A. Montgomery of TEWD, she was Co-PI on the ONR/MCWL-sponsored SECNAV Small UAV initiative, Dragon Eye (which presently numbers among the Popular Science Top 100 Best of What’s New 2001 [Popular Science (December 2001)]), and PI for the NRL Micro Air Vehicle and Non-Conventional Aerodynamics Programs. Dr. Dahlburg’s technical collaborations have included scientists in both the national and international physics and engineering communities. General Atomics Report GA–A23852 4–3 FY01 ICF Annual Report Project Staff Dr. Dahlburg has served on numerous review and other committees for the Department of Energy, the National Academy of Sciences/National Research Council, the National Science Foundation, and the American Physical Society [APS], among them being named to the USDOE Fusion Energy Advisory Committee in 1998, to the USDOE Advanced Scientific Computing Advisory Committee in 2000, and to the LLNL National Security Advisory Committee in 2001. Her professional honors include five NRL Alan Berman Research Publication Awards, and being named APS Centennial Speaker (1998-99) and APS/DPP Distinguished Lecturer (1999-00). Her clearances include DoD TS and USDOE Q. Jill Dahlburg is a Fellow of the American Physical Society. 4–4 General Atomics Report GA–A23852 Project Staff FY01 ICF Annual Report 4.3.2. Center for Advanced Technology and Cryogenics Excellence The Center for Advanced Technology and Cryogenics Excellence focuses on the design, assembly, and testing of cryogenic target systems for ICF. Working as a team with UR/LLE, LANL, NRL, and LLNL we designed and built several cryogenic systems. A significant achievement for the center so far has been the design and testing of the Omega Cryogenic Target System with the significant participation of UR/LLE. This system fills, transports, and inserts cryogenic direct drive targets into the Omega target chamber in Rochester. Operational since late 2000, it is now routinely used to fill cryogenic direct drive targets. This year, we completed fabrication of the Deuterium Test System, the first apparatus available for conducting layering experiments on full-scale NIF indirect drive ignition targets, a crucial step in the ignition goal of Stockpile Stewardship. It will have the capability to fill targets by permeation to a pressure high enough that a full thickness fuel layer is generated upon cooling the target.We are an integral part of the design team for the NIF Cryogenic Target System, assigned to the lead the development of the Target Cryostats subsystem and the Layering subsystem, and provide general design support as requested on other systems and subsystems. Also in support of NIF, we are working with LANL to develop and build the NIF Beryllium Capsule Deuterium-Tritium Fill System, a system designed to fill hollow beryllium capsules with high-pressure DT gas by bonding two machined hemispherical shells together in a high temperature, high pressure, DT environment. The Center for Advanced Technology and Cryogenics Excellence is also the center for developing innovations in target fabrication with the emphasis on mass production. This includes (under another DOE contract) developing techniques to substantially decrease the cost of an ICF target from approximately $2.5K per target today to 25¢ per target for future IFE plants. The Center for Advanced Technology and Cryogenics Excellence supports the current ICF program in cryogenic engineering and is preparing for future programs by developing mass production techniques for target fabrication. Gottfried Besenbruch (Ph.D. Inorganic Chemistry, Justus Liebig University) is Associate Director of the Division of Inertial Fusion Technology and head of the Center for Advanced Technology and Cryogenics Excellence. Dr. Besenbruch has 35 years of experience in research, the development of technologies, and the design and construction of process plants. In his first 20 years at GA, he worked in the nuclear field, first as a scientist and later as a program manager. The work centered on developing fuel for General Atomics Report GA–A23852 4–5 FY01 ICF Annual Report Project Staff the High Temperature Helium Gas Cooled Reactor
Recommended publications
  • Historical Perspective on the United States Fusion Program
    Historical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th Topical Meeting on the Technology of Fusion Energy 14-16 September, 2004 in Madison, WI Stephen O. Dean Fusion Power Associates, 2 Professional Drive, Suite 249, Gaithersburg, MD 20879 [email protected] A variety of methods to heat the nuclei to the Progress and Policy is traced over the approximately high speeds (kinetic energies) required to penetrate the 55 year history of the U. S. Fusion Program. The Coulomb barrier have been successfully utilized, classified beginnings of the effort in the 1950s ended with including running a high current through an ionized declassification in 1958. The effort struggled during the hydrogen gas ("ohmic heating"), accelerating beams of 1960s, but ended on a positive note with the emergence of nuclei, and using radio-frequency power. Temperatures the tokamak and the promise of laser fusion. The decade well in excess of the 50 million degrees needed for fusion of the 1970s was the “Golden Age” of fusion, with large are now routinely achieved. budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor II. THE 1960s AND 1970s (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy During the decade of the 1960s, and continuing Engineering Act of 1980, overwhelming approved by to the present, scientists developed a whole new branch of Congress and signed by President Carter. The Act called physics, called plasma physics [3], to describe the for a “$20 billion, 20-year” effort aimed at construction behavior of these plasmas in various magnetic of a fusion Demonstration Power Plant around the end of configurations, and sophisticated theories, models and the century.
    [Show full text]
  • Nova Laser Technology
    Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier­ (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high­ neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level.
    [Show full text]
  • ENGINEERING DESIGN of the NOVA LASER FACILITY for By
    ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system.
    [Show full text]
  • Lasers Join the Quest for Fusion Energy
    1974 Lasers and ICF Lasers Join the Quest to gain a better understanding of laser plasma physics and thermonuclear physics and to demonstrate for Fusion Energy laser-induced compression and thermonuclear burn of deuterium–tritium. It was also used to improve the LASNEX computer code developed for laser With the goal of achieving energy gain fusion predictions. Janus was just the In 1975, the one-beam Cyclops laser through inertial confinement fusion beginning of the development, in quick began operation, performing important (ICF) as its mission, the Laser Program succession, of a series of lasers, each target experiments and testing optical constructed its first laser for ICF building on the knowledge gained from designs for future lasers. The next year, experiments in 1974. Named Janus, the last, leading to the National Ignition the two-beam Argus was built. Use of the two-beam laser was built with about Facility (NIF), currently performing Argus increased knowledge about laser– 100 pounds of laser glass. experiments. The pace of laser target interactions and laser propagation The first Livermore laser for construction matched the growth limits, and it helped the ICF program prepared the Laboratory to take the With the 20-beam ICF research, Janus, had Under the leadership of John Emmett, in ICF diagnostics capabilities, develop technologies needed for the next major step, construction of the Shiva laser in 1977, the two beams and produced who headed the Laser Program from computer simulation tools, and next generation of laser fusion systems. 192-beam NIF (see Year 1997), where Laboratory established 10 joules of energy.
    [Show full text]
  • The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica
    The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica by Weiran Duan A thesis submitted in partial fulfilment for the requirements for the degree of PhD at the University of Central Lancashire October 2014 2 To my family i Declaration I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution. I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work. Weiran Duan ii Abstract High peak power laser systems, such as National Ignition Facility (NIF), Laser Mega Joule (LMJ), and High Power laser Energy Research facility (HiPER), include a large amount of optics. Fused silica glass is one of the most common optical materials which is used in these high peak power laser systems owing to its excellent optical properties, especially for the 355nm ultraviolet laser. However, it is generally found that fused silica optics damage under irradiation with a high peak power laser beam, and the laser induced damage (LID) becomes the limit to increasing the laser power. Theoretically, the laser induced damage threshold (LIDT) of fused silica substrates is high, while it drops significantly due to the poor surface quality created in the manufacturing process. This project aims to find a series of fused silica optical surface processing techniques which are able to improve the surface quality and increase its LIDT when irradiated using high peak power lasers.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • X-Ray Lasing: the Novette Laser
    X-Ray Lasing: The Novelle Laser Although the Novette laser system served primarily as a test bed for advanced concepts of targets and lasers for the Nova system, its flexibility enabled us to use it for research that led to the world's first demonstration of x-ray lasing. ver the past decade, we have harmonic conversion for producing For further information contact built a series of ever more light of higher frequencies (that is, Kenneth R. Manes (415) 423-6207. O powerful and complex laser shorter wavelengths). With Novette, systems Ganus, Argus, Shiva, and now we demonstrated a system for Nova) devoted to research on inertial routinely generating powerful beams confinement fusion (ICF) and weapon of green (0.53-pm) and ultraviolet physics. However, the Novette laser (0.35- and 0.26-pm) light, greatly Fig. 1 system (Fig. 1) did not fit neatly into broadening the range of feasible Artist's rendering of the business end of this series. Although it shared physics experiments. We confirmed the Novette laser system, showing the target characteristics of the other lasers, such that laser-plasma coupling, and chamber, the harmonic-conversion arrays, and the extensive diagnostic instrumentation. as master-oscillator power-amplifier therefore the performance of the rCF The laser amplifier chains are out of the (MOPA) architecture, neodymium­ capsules, is greatly enhanced if green picture, folded trombone style to fit into the glass amplifiers, and a 1.053-pm or ultraviolet light is used instead of available space. fundamental wavelength, in many ways Novette was considerably less complex than its predecessor, the Shiva laser.
    [Show full text]
  • Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas
    PSFC/JA-20-4 Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas J. A. Frenje January 2020 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 USA The work described herein was supported in part by US DOE (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G) and the Center for Advanced Nuclear Diagnostics (Grant No. DE-NA0003868). Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted to Plasma Physics and Controlled Fusion Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas J.A. Frenje1 1Massachusetts Institute of Technology, Cambridge, MA 02139, USA Email: [email protected] The field of nuclear diagnostics for Inertial Confinement Fusion (ICF) is broadly reviewed from its beginning in the seventies to present day. During this time, the sophistication of the ICF facilities and the suite of nuclear diagnostics have substantially evolved, generally a consequence of the efforts and experience gained on previous facilities. As the fusion yields have increased several orders of magnitude during these years, the quality of the nuclear-fusion-product measurements has improved significantly, facilitating an increased level of understanding about the physics governing the nuclear phase of an ICF implosion. The field of ICF has now entered an era where the fusion yields are high enough for nuclear measurements to provide spatial, temporal and spectral information, which have proven indispensable to understanding the performance of an ICF implosion. At the same time, the requirements on the nuclear diagnostics have also become more stringent.
    [Show full text]
  • Lll Laser Program Overview
    I ~ Ellerll APR 13 1~76 ~ illid ~~WJF Destroy Telllllllllill Route - Hold mos. Prepared for U.S . Energy Research & Development lell Administration under Contract No. W-7405-Eng-48 LA.WRENCE LIVERMORE LA.BORATORY LLL LASER PROGRAM LASERS AND LASER APPLICATIONS LLL LASER PROGRAM OVERVIEW ------------------------ During the past year, substantial progress has been thermonuclear burn of microscopic targets containing made toward laser fusion, laser isotope separation, and deuterium and tritium. Experiments are being run on the development of advanced laser media, the three a single-pulse basis , the emphasis being on fa st main thrusts of the LLL laser program. diagnostics of neutron, x-ray, a-particle, and scattered Our accomplishments in laser fusion have included: laser-light fluxes from the target. Our laser source fo r • Firing and diagnosing more than 650 individual this work is the neodymium-doped-glass (Nd:glass) experiments on the O.4-TW Janus laser system laser operating in a master-oscillator, power-amplifier (including many experiments with neutron yields in configuration, where a well-characterized, mode-locked the 107 range). pulse is shaped and ampli fied by successive stages to • Producing 1 TW of on-target irradiation with a peak power of I TW in a 20-cm-diam beam. Cyclops, presently the world's most powerful Thermonuclear burn has been demonstrated. With single-beam laser. successively larger Nd :glass laser systems, we now • Completing the design for the 25-TW Shiva laser expect sequentially to demonstrate significant burn, system and ordering the long-lead-time components. light energy breakeven (equal input and output (The building to house this laser system is on schedule energies) and, finally, net energy gain.
    [Show full text]
  • Laser Confinement Fusion • Use Powerful Laser to Compress And
    Laser Confinement Fusion • Use powerful laser to compress and heat hydrogen • Hydrogen stored in very small pellets • Outside of pellet boiled off by laser beam • Ablation causes plasma • Pellet compressed 4-5 times density of liquid hydrogen •Reaches temperature/pressure of sun core • Get Fusion reaction H 3 + H 2 → He4 + n +14MeV Laser Fusion Reactor • Pellets dropped into reactor • Laser pulse (40 nsec & terawatt) ignites compression wave • Energy from fusion carried in neutrons & helium 3 • Liquid Lithium shield adsorbs neutrons and energy • Regular "steam" generator to get power Argus Laser Fusion Facility • Lawrence Livermore Labs: 2 Terawatt in 1 nsec pulse • Nd:yag/glass laser built in 1976 • Demonstrated concepts for laser confinement fusion • Problem: need to have pellet heated very uniformly • Thus next stage increased number of beams Shiva Laser Fusion Facility • 20 Beam Nd:Yag system • Lawrence Livermore Labs: 30 Terawatt, 1 nsec • Most important result: needed to go to shorter wavelength National Ignition Facility • National Ignition Facility (NIF) newest design • 1.8 megaJoul, frequency tripled Nd:glass laser • 10 ps pulse, 1019 W/cm2 • 192 beam lines combined • Test concepts with Peta Wat laser • 1.25x1015W, 0.55 ps pulse, 1021 W/cm2 • Located at Lawrence Livermore Labs Laser Flight • Use orbital laser satellites to send down beams orbital solar power satellites • Light focused and tracts aircraft • Flight takes off normally - regular engines • Switches to laser drive for cruse section of flight • Significant savings in
    [Show full text]
  • APPENDIX a Why Magnetized Target Fusion Offers a Low-Cost
    MTF Proof-of-Principle Proposal App. A. Why MTF offers a low-cost development path. APPENDIX A Why Magnetized Target Fusion Offers A Low-Cost Development Path for Fusion Energy Richard E. Siemon Irvin R. Lindemuth Kurt F. Schoenberg Los Alamos National Laboratory Los Alamos, New Mexico Accepted by Comments on Plasma Physics and Controlled Fusion, December, 1997 1 MTF Proof-of-Principle Proposal App. A. Why MTF offers a low-cost development path. I. Introduction Reasonably priced energy supplies have become an expectation of the developed world and a necessary ingredient for development of Third World countries. The problem of providing large supplies of low-cost energy is a long-term, complex one that requires sustained R&D efforts, in spite of the shadow cast on long-term R&D by the federal deficit problem. The role of fusion energy as a power source was thoroughly reviewed and strongly endorsed in 1995 by the President’s Committee of Advisors on Science and Technology Fusion Review Panel chaired by John Holdren. He argued [Holdren 95]: The options available for meeting the world’s demand for energy in 2050 and beyond are those already in use – fossil fuels, biomass energy, nuclear fission, hydropower, geothermal energy, wind energy, and solar energy – plus, potentially, nuclear fusion. In these circumstances, it should be obvious that there is great merit in the pursuit of diversity in energy options for the next century. There are not so many possibilities altogether. The greater the number of these that can be brought to the point of commercialization, the greater will be the chance that overall energy needs can be met without encountering excessive costs from or unmanageable burdens upon any one source.
    [Show full text]
  • Plasma Physics and Controlled Nuclear Fusion Research 1984 Vol.3 TENTH CONFERENCE PROCEEDINGS, LONDON, 12-19 SEPTEMBER 1984 Nuclear Fusion, Supplement 1985
    Plasma Physics and Controlled Nuclear Fusion Research 1984 Vol.3 TENTH CONFERENCE PROCEEDINGS, LONDON, 12-19 SEPTEMBER 1984 Nuclear Fusion, Supplement 1985 fj&\ VW& INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1985 ^^ m PLASMA PHYSICS AND CONTROLLED NUCLEAR FUSION RESEARCH 1984 VOLUME 3 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA QATAR BANGLADESH IRAN, ISLAMIC REPUBLIC OF ROMANIA BELGIUM IRAQ SAUDI ARABIA BOLIVIA IRELAND SENEGAL BRAZIL ISRAEL SIERRA LEONE BULGARIA ITALY SINGAPORE BURMA IVORY COAST SOUTH AFRICA BYELORUSSIAN SOVIET JAMAICA SPAIN SOCIALIST REPUBLIC JAPAN SRI LANKA CAMEROON JORDAN SUDAN CANADA KENYA SWEDEN CHILE KOREA, REPUBLIC OF SWITZERLAND CHINA KUWAIT SYRIAN ARAB REPUBLIC COLOMBIA LEBANON THAILAND COSTA RICA LIBERIA TUNISIA CUBA LIBYAN ARAB JAMAHIRIYA TURKEY CYPRUS LIECHTENSTEIN UGANDA CZECHOSLOVAKIA LUXEMBOURG UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA MADAGASCAR REPUBLIC DEMOCRATIC PEOPLE'S MALAYSIA UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALI REPUBLICS DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN EGYPT MONGOLIA IRELAND EL SALVADOR MOROCCO UNITED REPUBLIC OF ETHIOPIA NAMIBIA TANZANIA FINLAND NETHERLANDS UNITED STATES OF AMERICA FRANCE NEW ZEALAND URUGUAY GABON NICARAGUA VENEZUELA GERMAN DEMOCRATIC REPUBLIC NIGER VIET NAM GERMANY, FEDERAL REPUBLIC OF NIGERIA YUGOSLAVIA GHANA NORWAY ZAIRE GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]