Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controlled Nuclear Fusion
Controlled Nuclear Fusion HANNAH SILVER, SPENCER LUKE, PETER TING, ADAM BARRETT, TORY TILTON, GABE KARP, TIMOTHY BERWIND Nuclear Fusion Thermonuclear fusion is the process by which nuclei of low atomic weight such as hydrogen combine to form nuclei of higher atomic weight such as helium. two isotopes of hydrogen, deuterium (composed of a hydrogen nucleus containing one neutrons and one proton) and tritium (a hydrogen nucleus containing two neutrons and one proton), provide the most energetically favorable fusion reactants. in the fusion process, some of the mass of the original nuclei is lost and transformed to energy in the form of high-energy particles. energy from fusion reactions is the most basic form of energy in the universe; our sun and all other stars produce energy through thermonuclear fusion reactions. Nuclear Fusion Overview Two nuclei fuse together to form one larger nucleus Fusion occurs in the sun, supernovae explosion, and right after the big bang Occurs in the stars Initially, research failed Nuclear weapon research renewed interest The Science of Nuclear Fusion Fusion in stars is mostly of hydrogen (H1 & H2) Electrically charged hydrogen atoms repel each other. The heat from stars speeds up hydrogen atoms Nuclei move so fast, they push through the repulsive electric force Reaction creates radiant & thermal energy Controlled Fusion uses two main elements Deuterium is found in sea water and can be extracted using sea water Tritium can be made from lithium When the thermal energy output exceeds input, the equation is self-sustaining and called a thermonuclear reaction 1929 1939 1954 1976 1988 1993 2003 Prediction Quantitativ ZETA JET Project Japanese Princeton ITER using e=mc2, e theory Tokomak Generates that energy explaining 10 from fusion is fusion. -
Historical Perspective on the United States Fusion Program
Historical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th Topical Meeting on the Technology of Fusion Energy 14-16 September, 2004 in Madison, WI Stephen O. Dean Fusion Power Associates, 2 Professional Drive, Suite 249, Gaithersburg, MD 20879 [email protected] A variety of methods to heat the nuclei to the Progress and Policy is traced over the approximately high speeds (kinetic energies) required to penetrate the 55 year history of the U. S. Fusion Program. The Coulomb barrier have been successfully utilized, classified beginnings of the effort in the 1950s ended with including running a high current through an ionized declassification in 1958. The effort struggled during the hydrogen gas ("ohmic heating"), accelerating beams of 1960s, but ended on a positive note with the emergence of nuclei, and using radio-frequency power. Temperatures the tokamak and the promise of laser fusion. The decade well in excess of the 50 million degrees needed for fusion of the 1970s was the “Golden Age” of fusion, with large are now routinely achieved. budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor II. THE 1960s AND 1970s (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy During the decade of the 1960s, and continuing Engineering Act of 1980, overwhelming approved by to the present, scientists developed a whole new branch of Congress and signed by President Carter. The Act called physics, called plasma physics [3], to describe the for a “$20 billion, 20-year” effort aimed at construction behavior of these plasmas in various magnetic of a fusion Demonstration Power Plant around the end of configurations, and sophisticated theories, models and the century. -
NEWSLETTER Issue No. 7 September 2017
NEWSLETTER September 2017 Issue no. 7 Nuclear Industry Group Newsletter September 2017 Contents Notes from the Chair ................................................................................... 3 IOP Group Officers Forum .......................................................................... 4 NIG Committee Elections ............................................................................ 6 Nuclear Industry Group Career Contribution Prize 2017 .......................... 7 Event – Gen IV Reactors by Richard Stainsby (NNL) ................................ 8 Event – Nuclear Security by Robert Rodger (NNL) and Graham Urwin (RWM) ......................................................................................................... 12 Event – The UK’s Nuclear Future by Dame Sue Ion ................................ 13 Event – Regulatory Challenges for Nuclear New Build by Mike Finnerty. .................................................................................................................... 15 Event – European Nuclear Young Generation Forum ............................. 18 Event – Nuclear Fusion, 60 Years on from ZETA by Chris Warrick (UKAEA), Kate Lancaster (York Plasma Institute), David Kingham (Tokamak Energy) and Ian Chapman (UKAEA) ....................................... 19 IOP Materials and Characterisation Group Meetings .............................. 25 “Brexatom” – the implications of the withdrawal for the UK from the Euratom Treaty. ........................................................................................ -
Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Labo
Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Labo... APPENDIX A DESCRIPTION OF MAJOR PROGRAMS AND FACILITIES Appendix A describes the programs, infrastructures, facilities, and future plans of Lawrence Livermore National Laboratory (LLNL) and the Sandia National Laboratories at Livermore (SNL, Livermore). It provides information on existing activities and facilities, as well as information on those activities anticipated to occur or facilities to be constructed over the next 5 to 10 years. The purpose of this appendix is to: present information that can be used to evaluate the proposed action and other EIS/EIR alternatives, identify activities that are part of the proposed action, distinguish proposed action activities from no action alternative activities, and provide supporting documentation for less detailed descriptions of these activities or facilities found in other sections and appendices of the EIS/EIR. Figure A-1 illustrates how this appendix interfaces with other sections and appendices of this EIS/EIR. Most LLNL and all SNL, Livermore operations are located at sites near Livermore, California. LLNL also operates LLNL Site 300 near Tracy, California, and conducts limited activities at several leased properties near the LLNL Livermore site, as well as in leased offices in Los Angeles, California, and Germantown, Maryland. Figure A-2 and Figure A-3 show the regional location of the LLNL Livermore site, LLNL Site 300, and SNL, Livermore and their location with respect to the cities of Livermore and Tracy. While they are distinct operations managed and operated by different contractors, for purposes of this document LLNL Livermore and SNL, Livermore sites are addressed together because of their proximity. -
The Economist's Free E-Mail Newsletters Twist and Shout and Alerts
Log in Register My account Subscribe Digital & mobile Newsletters RSS Jobs Help Thursday September 1st 2011 Search World politics Business & finance Economics Science & technology Culture Blogs Debate & discuss Multimedia Print edition Fusion power Be the first to comment Print Next ITERation? E-mail Reprints & permissions Generating electricity by nuclear fusion has long looked like a chimera. A reactor being built in Germany may change that Advertisement Sep 3rd 2011 | from the print edition Like 3 7 Most commented Most recommended 1. China's military power: Modernisation in sheep's clothing 2. Charlemagne: Among the dinosaurs 3. Anti-corruption protests in India: No modern-day AS THE old joke has it, fusion is the power of the future—and always will be. The sales Mahatma pitch is irresistible: the principal fuel, a heavy isotope of hydrogen called deuterium, 4. German business and politics: Goodbye to Berlin can be extracted from water. In effect, therefore, it is in limitless supply. Nor, unlike 5. Libya: The birth of free Libya fusion’s cousin, nuclear fission, does the process produce much in the way of 6. Immigration: Let them come radioactive waste. It does not release carbon dioxide, either. Which all sounds too good 7. Climate science (II): Clouds in a jar to be true. And it is. For there is the little matter of building a reactor that can run for 8. Language learning: No, she's foreign! long enough to turn out a meaningful amount of electricity. Since the first attempt to do 9. Martin Luther King: A blockheaded memorial so, a machine called Zeta that was constructed in Britain in the 1950s, no one has even 10. -
Preprint , Lawrence Ijvermore Laboratory
/ UCRL - 76z1° Rev 1 Thin is n preprint of a paper intended for publication in a journal or proceedings. Since changes may be made PREPRINT , before publication, this preprint is made Available with the understanding that it wiii not be cited or reproduced without the permission of the author. is LAWRENCE IJVERMORE LABORATORY Universityat' CaMornm/Livermore.Catifornia LASER PLASMA EXPERIMENTS RELEVANT TO LASER PRODUCED IMPLOSIONS H. G. Ahlstrom, J. F. Holzrichter, K. R. Manes, L. W. Colenan, D. R. Speck, R. A. Haas, and H. D. Shay November 7, 1974 - NOTICE - This repori was prepared as an account of wink sponsored by the United Slates Gimtrnmem. Scithct the United Slates nor the United Stales Energy Research and Development Administration, nor any of their employees, nor any <if their contractors, subcontractors, or Iheir employees, makes any warranty, express or implied, or assumes any lepal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents thjl its use would not infringe privately owned rights. This Paper Was Prepared For Submission To The Fifth Conference On Plasma Physics and Controlled Nuclear Fusion Research Tokyo, Japan - November 11-15, 1974 L/\vy. PU-VA rvPFn.nr';T? RELLVA;:T "TO LASH "POr,fT[|-, nPLDSlOIC* s II. '?. Ahlstroni, J. P. Hol.-ri enter, K. Mgnes. L. W. Col"man, "•. P. Speck, P. A. Haas, and H. ">. Shay i.r.-.rertce l.iven-ore Laboratory, t'niversity o*7 "aliforn Livermot?, California <»<I55'J November 7. 1974 ABSTPACT Preliminary lasor taraet interaction studies desinned to nrr ide co;l« normalization data in a reoine of interest to Ifiser fusion a- nyortP-1. -
X-Ray Thomson Scattering in High Energy Density Plasmas
REVIEWS OF MODERN PHYSICS, VOLUME 81, OCTOBER–DECEMBER 2009 X-ray Thomson scattering in high energy density plasmas Siegfried H. Glenzer L-399, Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551, USA Ronald Redmer Institut für Physik, Universität Rostock, Universitätsplatz 3, D-18051 Rostock, Germany ͑Published 1 December 2009͒ Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion, radiation hydrodynamics, material science, or laboratory astrophysics. -
Production Scientifique 2004-2007
Production scientifique 2004-2007 Articles parus dans des revues internationales ou nationales avec comité de lecture 2004 • H. Bandulet, C. Labaune, K. Lewis and S. Depierreux, Thomson scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability, Phys. Rev. Lett. 93, 035002 (2004) • S. Bastiani-Ceccotti, P. Audebert, V. Nagels-Silvert, J.P. Geindre, J.C. Gauthier, J.C. Adam, A. Héron and C. Chenais- Popovics, Time-resolved analysis of the x-ray emission of femtosecond-laser-produced plasmas in the 1.5-keV range, Appl. Phys. B 78, 905 (2004) • D. Batani, F. Strati, H. Stabile, M. Tomasini, G. Lucchini, A. Ravasio, M. Koenig, A. Benuzzi-Mounaix, H. Nishimura, Y. Ochi, J. Ullschmied, J. Skala, B. Kralikova, M. Pfeifer, C. Kadlec, T. Mocek, A. Prag, T. Hall, P. Milani, E. Barborini and P. Piseri, Hugoniot data for carbon at megabar pressures, Phys. Rev. Lett. 92, 065503 (2004) • A. Benuzzi-Mounaix, M. Koenig, G. Huse, B. Faral, N. Grandjouan, D. Batani, E. Henry, M. Tomasini, T. Hall and F. Guyot, Generation of a double shock driven by laser, Phys. Rev. E 70, 045401 (2004) • S. Bouquet, C. Stehlé, M. Koenig, J.P. Chièze, A. Benuzzi-Mounaix, D. Batani, S. Leygnac, X. Fleury, H. Merdji, C. Michaut, F. Thais, N. Grandjouan, T. Hall, E. Henry, V. Malka and J.P. Lafon, Observations of laser driven supercritical radiative shock precursors, Phys. Rev. Lett. 92, 225001 (2004) • P. Celliers, G. Collins, D. Hicks, M. Koenig, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. Bradley, L. Da Silva, R. -
Nova Laser Technology
Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level. -
1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science. -
ENGINEERING DESIGN of the NOVA LASER FACILITY for By
ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system. -
Alice E. Koniges Center for Beam Physics Seminar February 14, 2014
Multimaterial Multiphysics Modeling of Complex Experimental Configurations Alice E. Koniges Lawrence Berkeley National Laboratory Center for Beam Physics Seminar February 14, 2014 Acknowledgements • LLNL: ALE-AMR Development and NIF Modeling – Robert Anderson, David Eder, Aaron Fisher, Nathan Masters • UCLA: Surface Tension – Andrea Bertozzi • UCSD: Fragmentation – David Benson • LBL/LLNL: NDCX-II and Surface Tension – John Barnard, Alex Friedman, Wangyi Liu • LBL/LLNL: PIC – Tony Drummond, David Grote, Robert Preissl, Jean-Luc Vay • Indiana University and LSU: Asynchronous Computations – Hartmut Kaiser, Thomas Sterling Outline • Modeling for a range of experimental facilities • Summary of multiphysics code ALE-AMR – ALE - Arbitrary Lagrangian Eulerian – AMR - Adaptive Mesh Refinement • New surface tension model in ALE-AMR • Sample of modeling capabilities – EUV Lithography – NDCX-II – National Ignition Facility • New directions: exascale and more multiphysics – Coupling fluid with PIC – PIC challenges for exascale – Coupling to meso/micro scale Multiphysics simulation code, ALE-AMR, is used to model experiments at a large range of facilities Neutralized Drift Compression Experiment (NDCX-II) CYMER EUV Lithography System NIF LMJ National Ignition Facility (NIF) - USA Laser Mega Joule (LMJ) - France NDCX-II facility at LBNL accelerates Li ions for warm dense matter experiments TARGET # FOIL" ION BEAM " BUNCH" VOLUMETRIC DEPOSITION" ! The Cymer extreme UV lithography experiment uses laser heated molten metal droplets Tin Droplets •! Technique uses a prepulse to flatten droplet prior to main pulse CO2 Laser Wafer •! Modeling critical to optimize process •! Surface tension affect droplet dynamics Multilayer Mirror Density 7.0 t = 150 ns t = 350 ns t = 550 ns 60 3.5 30 0.0 z (microns) CO2 Laser 0 -30 0 30 -30 0 30 -30 0 30 x (microns) x (microns) x (microns) Large laser facilities, e.g., NIF and LMJ, require modeling to protect optics and diagnostics 1.1 mm The entire target, e.