Feasibility of Inertial-Confinement Fusion

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Inertial-Confinement Fusion On October 15, 1981, John H. Nuckolls this article has occurred because of the received the American Physical Society's dedication and inspiration of John Maxwell Prize for outstanding contribu­ Nuckolls and his colleagues at LLNL, as tions to plasma physics. The citation read well as of hundreds of researchers else­ "For his contributions to the genesis and where in the United States and other na­ progress of inertial confinement fusion. tions. In addition to their work, consistent His insight into the fundamental physics support for the U.S. Inertial Fusion Pro­ issues has served to guide and inspire the gram has been provided by the Depart­ technical evolution of the field." An article ment of Energy and its predecessors and based on his Maxwell lecture to the Soci­ by the Congress of the United States. This ety was published in Physics Today (Sep­ support has led, in 10 years time, to an ef­ tember 1982). Because of the interest that fort with the accomplishments and scope readers of the En ergy and Technol ogy described in this article. It should be fur­ Review could have in John's views on ther noted that, although the thrust of this John's views on inertial confinement fusion, the editors article is directed toward the long-range power-potential of the En ergy and Technology Review have agreed to re­ of the Inertial Fusion Program, current support and print the article in this issue. The work described in nearer-term goals are defense related. Feasibility of Inertial­ Confinement Fusion "We can see no insurmountable roadblocks to th e practi­ temperatures sufficient to cause the hy­ cal achievement of electrical power generated by in ertial­ drogen nuclei to fuse, releasing an confinement fusion ... An ICF reactor may have a rela ­ amount of energy equivalent to that of tively small containment volume [and] its operation, a barrel of oil (see Physics Today, maintenance, and repair will be relatively simple." August 1973, page 46). Those who are skeptical of the inertial-confinement fusion program For further information contact So concluded the chairman of a have a number of objections. They cite John Nuckolls (415) 422-5435. Department of Energy ad hoc commit­ the fact that the magnetic-fusion tee of experts in 1979, after a compre­ machines-tokamaks and mirrors-are Reprinted, with permission, from Physics Today, hensive review of the U.S. inertial­ several years ahead, and they note the 1 September 1982. confinement fusion program. In spite time and effort that will be required to of this positive evaluation, the role of solve the technical problems, princi­ inertial-confinement fusion in the total pally the coupling of the laser beam to . U.s. energy program continues to be a the target, the confinement of the subject of disagreement.2 Before I men­ fusion explosion, and the development tion the issues of contention, let me de­ of a practical driver. scribe inertial-confinement fusion During the past three years, how­ briefly. In a typical reactor scheme, a ever, inertial-confinement fusion has pea-sized target pellet containing hy­ made substantial progress toward solv­ drogen isotopes is projected into a reac­ ing its principal scientific and techno­ tor chamber, where it is suddenly ir­ logical problems. The program has: radiated with an intense beam of light • Achieved efficient beam-target or ions from a "driver" (Fig. 1). As the coupling using short-wavelength lasers, surface of the target blasts away, the • Achieved high-density implosions rocket-like reaction forces implode the with so-called "hohlraum" targets, target's interior to densities and which we will discuss later, 18 DEFENSE PROGRAMS • Improved the design of damage­ In 1980, Congress and the President proof fluid walls for reactors with high strongly endorsed accelerated develop­ power densities, ment of magnetic fusion. Although eco­ • Designed drivers of higher effi­ nomic difficulties in the United States ciency and lower cost, and have postponed this growth, the ur­ • Planned to utilize the physical gency for fusion continues to increase. separation of the reactor and the high­ The Middle East, source of much of our technology components-the driver oil, is unstable. Weaknesses and uncer­ and the target factory-which several tainties are emerging in the coal-fission reactors can share. These developments strategy for energy independence. Fis­ make possible fusion reactors with sion energy is increasingly impeded by minimum cost and radioactive waste. Murphy's Law (what can go wrong, will) and growing public opposition, The Rise of Fusion while coal energy is generating acid In 1942, Hans Bethe, Enrico Fermi, rain and in the 21st century may pro­ Fig. 1 J. Robert Oppenheimer, Edward Teller, duce major global climate changes Inertial-confinement-fusion reactor and others began to develop the phys­ through the CO2 greenhouse effect. concept known as HYLIFE. A shower ics of practical fusion. Later, at Los To contribute to the solution of these of liquid lithium shields the first wall Alamos, fusion research was driven by energy problems in the next century, from damaging neutrons, x rays, and the determination and technical leader­ inertial fusion must meet several diffi­ hot plasma from exploding fuel pel­ ship of Teller. In 1952, seven years after cult challenges. The DOE experts' com­ lets. With an average lithium thickness of 50 cm, the neutron damage is suffi­ development of the atomic trigger, seis­ mittee, which was headed by John ciently reduced to increase the life­ mographs worldwide registered the Foster, Jr., vice-president of science and time of the first wall tenfold. The success of the multimegaton inertial­ technology at TRW Inc., and former neutron-induced radioactivity in the confinement device. In the 1950s, the DOD Director of Defense Research and reactor structure is reduced 10- to extraordinary promise of controlled Engineering and Director of Lawrence 100-fold. The average power at the first wall is relatively high, approxi­ fusion-safe, clean, low-cost energy Livermore, noted that " .. many prob­ mately 10 MW/ m2. More than 90% of with inexhaustible fuel accessible to all lems and unknowns remain, but this power is absorbed by the liquid nations-led to research programs on because of the wealth of promising lithium. magnetic-confinement fusion at many scientific laboratories. The 1960s saw ~GraPhite plug the conception and calculation of iner­ ~!I!F . tial approaches to controlled fusion, in­ cluding schemes based on implosions driven by laser and charged-particle beams. The energy crisis stimulated rapid .,...----Laser or heavy growth in both the magnetic and ion beams inertial-confinement fusion programs in the early 1970s. The inertial­ confinement fusion programs at LLNL, the University of Rochester Laboratory for Laser Energies, the Lebedev Insti­ tute in the USSR, and Limeil Labora­ tories in France were joined by the new programs at KMS Fusion Inc., Los Liquid-metal jet array Alamos and Sandia National Labora­ Coolant channels Beam and pellet tories, Naval Research Laboratory, Rutherford Laboratory in England, Graphite reflector Osaka University in Japan, Max Planck Institute at Garching in West Germany, and laboratories elsewhere. Rapid growth was sustained throughout the 1970s, driven by OPEC policies, fis­ Laser or-----­ sion's political and technical difficulties, heavy-ion beams and fusion's scientific progress. 19 approaches, it seems plausible that with The hohlraum target designs are a continued national effort, a prototype classified. experimental IeF reactor will be in op­ Inertial-confinement fusion must eration by the turn of the century."l demonstrate that one can achieve a suf­ What are these problems, unknowns, ficiently high target gain with an af­ and promising approaches? fordable driver. Target gain is the ratio As we have indicated above, the key of the energy yield of the fusion reac­ idea of inertial-confinement fusion is to tion to the driver energy applied to the ignite small-scale, contained fusion ex­ target. Assuming driver and implosion plosions by using high-power beams of efficiencies of 10%, the target gain must energy that implode fuel to superhigh be greater than 100. Such a gain is fea­ densities and thermonuclear tempera­ sible with multimegajoule drivers if tures. For both inertial and magnetic three conditions are satisfied: the beam fusion, burn efficiency-the percentage couples efficiently to the target, the fuel of nuclei that fuse-is proportional to is efficiently compressed to 1000 times the product of density and confinement its liquid density, and a small fraction time. In magnetic fusion, the fuel den­ of the fuel is ignited at the center of the sity is limited by material properties, so target pellet. The remaining fuel must one increases the efficiency of the burn also ignite by propagation from the by extending the duration of confine­ central ignited region and burn ment. In inertial fusion, Newton's laws efficien tl y. and thermal velocity limit the confine­ For practical fusion power, we must ment time, so one tries to compress the develop three technologies to harness fuel to higher densities. Densities up to the high-gain targets: an efficient and 1000 g/cm3 are energetically accessible affordable driver that couples efficiently via isentropic, or constant-entropy, to the target, a practical and economi­ compression because the Fermi cally competitive reactor that incorpo­ energy-the minimum energy of com­ rates solutions to the problems of cyclic pressed matter- is much less than the fatigue and stress from pulsed radia­ thermal energy at ignition. tion, and a practical target factory. We There are two basic target designs will address these scientific and techno­ for inertial-confinement fusion reactors: logical issues . • Direct targets absorb the driver By using high-intensity short­ Fig. 2 beam energy in an outer layer or wavelength laser light, researchers have Absorption of laser light by targets in­ "shell," which acts directly to produce improved the absorption of energy by c reases d r amat ically with shorter the implosion.
Recommended publications
  • Historical Perspective on the United States Fusion Program
    Historical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th Topical Meeting on the Technology of Fusion Energy 14-16 September, 2004 in Madison, WI Stephen O. Dean Fusion Power Associates, 2 Professional Drive, Suite 249, Gaithersburg, MD 20879 [email protected] A variety of methods to heat the nuclei to the Progress and Policy is traced over the approximately high speeds (kinetic energies) required to penetrate the 55 year history of the U. S. Fusion Program. The Coulomb barrier have been successfully utilized, classified beginnings of the effort in the 1950s ended with including running a high current through an ionized declassification in 1958. The effort struggled during the hydrogen gas ("ohmic heating"), accelerating beams of 1960s, but ended on a positive note with the emergence of nuclei, and using radio-frequency power. Temperatures the tokamak and the promise of laser fusion. The decade well in excess of the 50 million degrees needed for fusion of the 1970s was the “Golden Age” of fusion, with large are now routinely achieved. budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor II. THE 1960s AND 1970s (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy During the decade of the 1960s, and continuing Engineering Act of 1980, overwhelming approved by to the present, scientists developed a whole new branch of Congress and signed by President Carter. The Act called physics, called plasma physics [3], to describe the for a “$20 billion, 20-year” effort aimed at construction behavior of these plasmas in various magnetic of a fusion Demonstration Power Plant around the end of configurations, and sophisticated theories, models and the century.
    [Show full text]
  • Nova Laser Technology
    Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier­ (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high­ neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level.
    [Show full text]
  • ENGINEERING DESIGN of the NOVA LASER FACILITY for By
    ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system.
    [Show full text]
  • Lasers Join the Quest for Fusion Energy
    1974 Lasers and ICF Lasers Join the Quest to gain a better understanding of laser plasma physics and thermonuclear physics and to demonstrate for Fusion Energy laser-induced compression and thermonuclear burn of deuterium–tritium. It was also used to improve the LASNEX computer code developed for laser With the goal of achieving energy gain fusion predictions. Janus was just the In 1975, the one-beam Cyclops laser through inertial confinement fusion beginning of the development, in quick began operation, performing important (ICF) as its mission, the Laser Program succession, of a series of lasers, each target experiments and testing optical constructed its first laser for ICF building on the knowledge gained from designs for future lasers. The next year, experiments in 1974. Named Janus, the last, leading to the National Ignition the two-beam Argus was built. Use of the two-beam laser was built with about Facility (NIF), currently performing Argus increased knowledge about laser– 100 pounds of laser glass. experiments. The pace of laser target interactions and laser propagation The first Livermore laser for construction matched the growth limits, and it helped the ICF program prepared the Laboratory to take the With the 20-beam ICF research, Janus, had Under the leadership of John Emmett, in ICF diagnostics capabilities, develop technologies needed for the next major step, construction of the Shiva laser in 1977, the two beams and produced who headed the Laser Program from computer simulation tools, and next generation of laser fusion systems. 192-beam NIF (see Year 1997), where Laboratory established 10 joules of energy.
    [Show full text]
  • The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica
    The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica by Weiran Duan A thesis submitted in partial fulfilment for the requirements for the degree of PhD at the University of Central Lancashire October 2014 2 To my family i Declaration I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution. I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work. Weiran Duan ii Abstract High peak power laser systems, such as National Ignition Facility (NIF), Laser Mega Joule (LMJ), and High Power laser Energy Research facility (HiPER), include a large amount of optics. Fused silica glass is one of the most common optical materials which is used in these high peak power laser systems owing to its excellent optical properties, especially for the 355nm ultraviolet laser. However, it is generally found that fused silica optics damage under irradiation with a high peak power laser beam, and the laser induced damage (LID) becomes the limit to increasing the laser power. Theoretically, the laser induced damage threshold (LIDT) of fused silica substrates is high, while it drops significantly due to the poor surface quality created in the manufacturing process. This project aims to find a series of fused silica optical surface processing techniques which are able to improve the surface quality and increase its LIDT when irradiated using high peak power lasers.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • X-Ray Lasing: the Novette Laser
    X-Ray Lasing: The Novelle Laser Although the Novette laser system served primarily as a test bed for advanced concepts of targets and lasers for the Nova system, its flexibility enabled us to use it for research that led to the world's first demonstration of x-ray lasing. ver the past decade, we have harmonic conversion for producing For further information contact built a series of ever more light of higher frequencies (that is, Kenneth R. Manes (415) 423-6207. O powerful and complex laser shorter wavelengths). With Novette, systems Ganus, Argus, Shiva, and now we demonstrated a system for Nova) devoted to research on inertial routinely generating powerful beams confinement fusion (ICF) and weapon of green (0.53-pm) and ultraviolet physics. However, the Novette laser (0.35- and 0.26-pm) light, greatly Fig. 1 system (Fig. 1) did not fit neatly into broadening the range of feasible Artist's rendering of the business end of this series. Although it shared physics experiments. We confirmed the Novette laser system, showing the target characteristics of the other lasers, such that laser-plasma coupling, and chamber, the harmonic-conversion arrays, and the extensive diagnostic instrumentation. as master-oscillator power-amplifier therefore the performance of the rCF The laser amplifier chains are out of the (MOPA) architecture, neodymium­ capsules, is greatly enhanced if green picture, folded trombone style to fit into the glass amplifiers, and a 1.053-pm or ultraviolet light is used instead of available space. fundamental wavelength, in many ways Novette was considerably less complex than its predecessor, the Shiva laser.
    [Show full text]
  • Fusion Energy: `Yes We Can' by Laurence Hecht Editor-In-Chief, 21St Century Science & Technology January 11, 2009
    Fusion Energy: `Yes We Can' by Laurence Hecht Editor-in-chief, 21st Century Science & Technology January 11, 2009 John Nuckolls, former director of Lawrence Livermore National Laboratory, has proposed a 10-year strategy for achieving laser fusion, which he said could be accomplished with 10 percent of President-elect Obama's $150-billion projected energy program. The contents of Dr. Nuckolls' proposal addresses issues of science not well-known to today's general public, but which should be better known. In laser fusion, a tiny target of deuterium, sometimes combined with tritium, is compressed by a shock wave which is produced by focused laser beams. The shock causes the deuterium, a naturally occurring isotope of hydrogen present in seawater, and tritium to combine, forming a nucleus of helium and a neutron. The mass of the resulting helium nucleus is less than the component nuclei, and the mass difference is released as energy, according to the famous equation E = mc2. The energy release per fusion is several times greater than that produced by the fission of a uranium nucleus, which is millions of times greater than the energy released by burning of a molecule of oil or natural gas. The heat of fusion energy can thus drive electrical turbines with far greater efficacy than any known power source, and can also be utilized in a device known as the fusion torch, to break down raw ore and even garbage into its constituent elements. Dr. Nuckolls, who led research on laser fusion at the national laboratory for many years, proposed "four steps to fusion power." (1) build an efficient high-average power laser module, a factory for producing laser targets, and a fusion chamber; (2) build a surged, heat capacity inertial fusion energy system; (3) build a fusion engine; (4) build a fusion power plant.
    [Show full text]
  • To Ignition to Ignition
    ON THE PATH TO IGNITION 10 S&TR March 2013 National Ignition Campaign National Ignition Facility experiments produce new states of matter as scientists close in on creating the conditions required to ignite fusion fuel. MONG the most challenging scientific closer to achieving ignition and fulfilling A quests over the past 50 years has the vision of early fusion pioneers such as been the international effort to create, in former Laboratory Director John Nuckolls. a laboratory setting, a miniature “star on Shortly after the laser’s invention in 1960, Earth.” The goal of this endeavor is to Nuckolls conceived of using the x rays surpass the extreme mix of temperature, generated by a powerful laser pulse to fuse density, and pressure at the center of the hydrogen isotopes, convert matter into Sun and generate conditions in which energy (as in Einstein’s famous equation, hydrogen fusion reactions can start and E = mc2), and thereby liberate more energy sustain themselves, thus creating a fusion than is delivered by the laser pulse. fire in the laboratory. The ongoing fusion “NIF was designed to be the world’s reaction in the Sun’s center provides largest laser,” says NIF chief scientist John all the energy needed for life on Earth. Lindl. “In fact, it now operates as such. Replicating this sustained reaction in a We have known from the outset that the laboratory requires conditions that are even energy it delivers does not give us a large more extreme: temperatures in the tens of margin of performance to achieve ignition. millions of degrees, pressures hundreds Everything that occurs during the implosion of billions of times Earth’s atmosphere, of hydrogen fuel must be nearly perfect.” and a density of burning matter that is Lindl notes that significant progress has more than 100 times the density of lead.
    [Show full text]
  • NIF, an Unexpected Journey
    NIF: An Unexpected Journey and Lessons Learned to Secure “Projects of Scale” LLNL Seminar Mike Campbell July 9, 2020 1 Outline History is important: Look forward but learn from the past • LLNL ICF Program History – “100× Campaign” (compressing DT to ~20 g/cm3 as a focus) • Past research programs with lessons to be learned – X-ray laser program (“Star Wars”) • National Ignition Facility – background – technical approach – “political” approach • Lessons for future large-scale facilities 2 LLNL ICF Program History* Nova laser at LLNL ____________ * Any inaccuracies are mine 3 The 1970s was a decade of laser building at LLNL culminating in the planned construction of Nova • Janus (two beams at ~100 J/beam) first LLNL neutrons! (KMS was first!) • Argus (two beams ~1000 J/beam) ~first modern laser architecture • Shiva (20 beams at 500 J/beam) radiation-driven ablative implosions to high density • Nova (20 beams at 12 kJ/beam) ignition and gain All lasers Nd:Glass with 흀 = 1 흁m with “unconditioned” laser beams on target. 4 The LLNL (NIF) main fusion approach is laser- produced x-ray drive (“indirect drive”) Target design and temporally tailored drive pulse produce an assembled fuel configuration –1/2 • Pign ~(Efuel) What was the motivation? • NIF has achieved ~350 Gbar • Alpha heating of fuel demonstrated (~55 kJ) 5 In the 1970s direct drive faced many scientific challenges Direct-drive target “Unsmoothed laser beam Shell breakup with high (R/횫R) • Direct-drive issues 훾t – hydrodynamic instabilities: A(t) = A0 e – A0: “seeds” for Rayleigh–Taylor
    [Show full text]
  • Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas
    PSFC/JA-20-4 Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas J. A. Frenje January 2020 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 USA The work described herein was supported in part by US DOE (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G) and the Center for Advanced Nuclear Diagnostics (Grant No. DE-NA0003868). Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted to Plasma Physics and Controlled Fusion Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas J.A. Frenje1 1Massachusetts Institute of Technology, Cambridge, MA 02139, USA Email: [email protected] The field of nuclear diagnostics for Inertial Confinement Fusion (ICF) is broadly reviewed from its beginning in the seventies to present day. During this time, the sophistication of the ICF facilities and the suite of nuclear diagnostics have substantially evolved, generally a consequence of the efforts and experience gained on previous facilities. As the fusion yields have increased several orders of magnitude during these years, the quality of the nuclear-fusion-product measurements has improved significantly, facilitating an increased level of understanding about the physics governing the nuclear phase of an ICF implosion. The field of ICF has now entered an era where the fusion yields are high enough for nuclear measurements to provide spatial, temporal and spectral information, which have proven indispensable to understanding the performance of an ICF implosion. At the same time, the requirements on the nuclear diagnostics have also become more stringent.
    [Show full text]
  • Lll Laser Program Overview
    I ~ Ellerll APR 13 1~76 ~ illid ~~WJF Destroy Telllllllllill Route - Hold mos. Prepared for U.S . Energy Research & Development lell Administration under Contract No. W-7405-Eng-48 LA.WRENCE LIVERMORE LA.BORATORY LLL LASER PROGRAM LASERS AND LASER APPLICATIONS LLL LASER PROGRAM OVERVIEW ------------------------ During the past year, substantial progress has been thermonuclear burn of microscopic targets containing made toward laser fusion, laser isotope separation, and deuterium and tritium. Experiments are being run on the development of advanced laser media, the three a single-pulse basis , the emphasis being on fa st main thrusts of the LLL laser program. diagnostics of neutron, x-ray, a-particle, and scattered Our accomplishments in laser fusion have included: laser-light fluxes from the target. Our laser source fo r • Firing and diagnosing more than 650 individual this work is the neodymium-doped-glass (Nd:glass) experiments on the O.4-TW Janus laser system laser operating in a master-oscillator, power-amplifier (including many experiments with neutron yields in configuration, where a well-characterized, mode-locked the 107 range). pulse is shaped and ampli fied by successive stages to • Producing 1 TW of on-target irradiation with a peak power of I TW in a 20-cm-diam beam. Cyclops, presently the world's most powerful Thermonuclear burn has been demonstrated. With single-beam laser. successively larger Nd :glass laser systems, we now • Completing the design for the 25-TW Shiva laser expect sequentially to demonstrate significant burn, system and ordering the long-lead-time components. light energy breakeven (equal input and output (The building to house this laser system is on schedule energies) and, finally, net energy gain.
    [Show full text]