The Novette Laser Facility: a Step in the Evolution of High-Power Laser Systems

Total Page:16

File Type:pdf, Size:1020Kb

The Novette Laser Facility: a Step in the Evolution of High-Power Laser Systems Energy and Technology Review ~awrence Livermore National Laboratory January 1985 The Novette Laser Facility: A Step in the Evolution of High-Power Laser Systems Work with the recently dismantled Novette laser, LLNL's flexible, high-energy-density experimental facility, has profoundly affected our understanding of laser-plasma coupling phenomena. Novette was the first in the Laboratory's series of successively more powerful and complex laser systems to incorporate full-power harmonic conversion of laser light in nonlinear birefringent media, and with it we probed the details of the design for the Nova laser. For further information contact In the course of inertial-confinement system in the evolving series of Kenneth R. Manes (415) 422-0681. fusion (ICF) research at LLNL, we have Laboratory lasers was designed to exploit designed and built a series of the knowledge gained through successively more powerful and complex experiments with its predecessor. laser systems: Janus, Cyclops, Argus, The Novette laser was the first to Shiva, Novette, and soon the next incorporate full-power harmonic generation, Nova. All of these laser upconversion in order to test the systems used or will use chains of hypothesis that short-wavelength laser neodymium-glass amplifiers (in the form pulses couple energy more efficiently to of scaled modules), and they all share target plasmas than longer ones do. the same fundamental design, called Thus, the Novette laser provided MOPA-a Master Oscillator driving a a flexible, high-energy-density single-pass Power Amplifier. Each experimental facility to bridge the gap 10 DEFENSE PROGRAMS between the Shiva and Nova lasers, theoretical and experimental studies have while allowing us to probe the details of indicated that coupling and, therefore, the Nova design. In the late summer of target performance would improve 1984, its work completed, the Novette significantly when the wavelength of the laser was dismantled and its amplifier incident laser light was shortened below chains were moved into the Nova laser 1 pm. Accordingly, the Nova laser is bay. designed for the harmonic conversion of In inertial confinement fusion, tiny but the fundamental infrared laser pulse to powerful thermonuclear explosions are green or to near-ultraviolet light before produced by focusing a laser beam on the beam is focused onto the target. microscopic (0.1 to 5.0 mm) deuterium­ The Novette laser produced these tritium (D-T) targets. Because the laser wavelengths and also, for its final ICF beam is very intense (102 to 104 TW/cm2), experimental series, the fourth-harmonic it generates a dense plasma where it ultraviolet light (0.263 pm). impinges on the target material. This plasma interacts strongly with the laser ovette Design beam. Each of the Novette laser's two As recently as 1980, opinion was still N beam lines was optically divided as to the relative effect veness of similar to a Nova laser arm, the different lasers (and laser wavelengths) emerging beams having diameters of as fusion drivers. Most evidence now 74 cm (see Fig. 2) . Harmonic conversion favors a green (0.526-pm) to near­ took place in two unique mosaic arrays ultraviolet (0.351-pm) laser. of type II potassium dihydrogen The Novette laser fulfilled the need phosphate (KDP) crystals. The two for a short-wavelength source for approximately 4.5-TW green (2OJ) pulses multikilojoule target experiments. We were concentrated onto targets by two combined components from the earlier 74-cm-aperture £/4 doublet lenses. Shiva laser, until Novette the world's Because the two pulses arrived at the most powerful, with borrowed parts target within 5 ps of each other, a typical delivered for the Nova laser (our target could be irradiated simultaneously Fig. 1 100-TW -class laser system, which from two sides by approximately 9 kJ in reached its construction completion 1 ns. Artist's rendering of the Novette target area showing the refurbished Shiva tar­ milestone on December 19, 1984, by We devoted about half of the Novette get chamber and the final frequency­ firing all ten beams, frequency converted laser's experimental time to plasma conversion crystals and focusing-lens to 0.351 pm, into the largest chamber). physics studies, whose aim was to assemblies. We assembled the Novette laser on an accelerated schedule in an existing building adjacent to the new Nova laboratory. Construction began in January 1982, and the system was activated in 13 months. The facility included a Nova-style control system, the refurbished Shiva target chamber, and a full suite of target diagnostics (Fig. 1). The Novette laser produced 18-kJ, I-ns, infrared (1 OJ) pulses that were frequency doubled to green light (2 OJ) and focused onto targets. During 1983 and 1984, we gathered a large body of data on the performance of the Novette laser as a system. In this article, we compare calculations with measurements taken at several locations within the laser chains. Our work with the Novette laser has profoundly affected our understanding of laser-plasma coupling phenomena. Both 11 develop a better understanding of short­ energies of up to 1 J each. At the master wavelength, laser-plasma interaction oscillator, the laser beam was spatially phenomena relevant to inertial Gaussian with a diameter of 1.5 mm confinement fusion. The balance of the at 10% of its maximum intensity. As experimental time was divided between the beam proceeded through the high-density implosion research and the preamplifier, it was expanded and passed very successful laboratory x-ray laser through an aperture so that only the experiments. Finally, laser data were smoothest central region exited the obtained to help define the Nova laser preamplifier and was presented to each configuration. of the arms. Figure 2 is an optical schematic that In each arm, seven beam-expanding shows the Novette laser's relation to spatial filters separated stages consisting other LLNL MOPA-system architectures. of rod and disk amplifiers with We have gradually improved the increasingly larger apertures. The peak fundamental design by using output flux from each stage was components that were increasingly chosen to be near its operating limit. reliable, efficient, damage resistant, Propagation was controlled by these and cost-effective. Along the way, we spatial filters to minimize local intensity have learned a great deal about the fluctuations and to keep the maximum propagation of high-power laser pulses laser flux below optical-damage limits. in the dielectric media typically found By maximizing the fill factor, or in neodymium-glass amplifier chains. efficiency, with which each amplifier's We based the design of the Novette aperture was used, we minimized test bed on the requirements of the Nova the peak laser flux that each optical laser. Because the output of a repeatable, component had to tolerate to produce high-quality master oscillator is typically a given output. about 10 - 4 J, the Nova power amplifier The principal design constraint on 9 must provide a gain of 10 . In the the maximum energy delivered by each Novette laser, therefore, the weak pulse stage is the damage threshold of its produced by the master oscillator first optical components, which depends, passed through a preamplifier consisting in tum, on the purity of the optical of crystalline and glass-rod amplifiers, medium, the optical surface, the pulse beam-expanding spatial filters, and duration, and the wavelength of the laser beam-splitting elements, to produce two light. To raise the damage threshold in parallel, spatially uniform beams with the Novette laser, components such as Master osc:IIator 3.75 9.4 9.4 Janus size Argus, Cyclops, Shiva size Nova, 74 cm Novette size 31.5-cm disk amplifiers !2;] n-cm aperture amplifier Fig. 2 t><l Spatial filter Each of the Novette laser's two beam lines was optically similar to a Nova VI Faraday isolator (14 arm. This optical schematic shows the focus relationship of the system architectures a Mirror KDP doubling array ~ lens (doublet) constructed at LLNl. 1.0S·J.Lm beam dump 12 DEFENSE PROGRAMS spatial filter lenses, which in previous array, while the lower band represents laser systems were antireflection-coated an estimate of the highest (damage with dielectric films, were replaced with limited) 0.53-.um on-target energy versus optics treated by a neutral solution laser pulse duration. process.] Such optics not only display Our designs for each amplifier stage excellent transmission (typically greater of the laser were based on damage risk than 99.5%) but also have surface­ assessments made using MALAPROP damage thresholds of 12 to 16 J/cm2 for computations. The components most I-ns pulses, approaching those of the vulnerable to laser-induced damage were polished glass substrate. We tested this the input lenses to the last two spatial new technology on the large-diameter filters . Neutral-solution, antireflection spatial-filter lenses, windows, and target­ coatings on these optics have survived focusing lenses of the Novette laser in unharmed after being subjected to more preparation for the Nova laser. than 100 shots of I-ns duration with A major design goal for both the average fluxes of 5 to 7 J/cm 2 and peak Novette and Nova lasers was to fluxes twice as large. Indeed, bulk maximize the output energy without damage as a result of microscopic damaging optics. We would like to metallic inclusions has set the practical propagate an ideal beam that exactly fills flux limit for these lenses. the power amplifier with an output flux just below the damage limit. However, armonie Conversion such a beam does not propagate for any The conversion of laser light useful distance without diffraction of the H into its harmonics in nonlinear beam edges, which leads to constructive birefringent media is a well-known interference and regions of excessive process that was first demonstrated more optical flux.
Recommended publications
  • Laboratory Astrophysics with Lasers Chantal Stehlé
    Laboratory Astrophysics with lasers Chantal Stehlé LERMA (Laboratoire d’Etudes de la Ma4ère et du Rayonnement en Astrophysique et Atmosphères) This work is partly supported by French state funds managed by the ANR within the InvesBssements d'Avenir programme under reference ANR-11-IDEX-0004-02. Plasma astrophysics see for instance Savin et al. « Lab astro white paper », 2010 Perimeter Methods • Microscopic physical • Experiments processes (opacity, EOS) • Theory, databases • • MulBscale, mulphysics Numerical simulaons • Links to observaons processes (e.g. magne4c reconnecon, shock waves, instabili4es …) Tools • Study of large scale scaled • Medium size lab. processes, (e.g. stellar jets) experiments • Large scale faciliBes (lasers and pinches ) • Super-compung ressources OUTLINE • IntroducBon • Stellar Opacity • EOS for gazeous planets • Scaling • Accreon & Ejecon processes in Young Stars • Conclusion Opacity for stellar interiors From Turck Chièze et al. ApSS 2010 4 Opacity An example of opacity : For a optically thick medium, Hydrogen( Stehlé et al 1993) • LTE is ~ valid -> near blackbody radiaon κν/ρ • The monochromac radiave flux Fν ! is proporBonal to the gradient of rad. Energy and to 1/κν (The radia4on tends to escape from regions where κν is low, ie between lines) hν • The frequency averaged flux <F> is linked to the Rosseland opacity κR. 1 3 dν dB (T) / dT 16 σ T dT 1 ∫ κ ν < F > = and = ν d dB (T) / dT 3 κ R dz κ R ∫ ν ν 5 CEPHEIDS: the enigma Strong periodic (P~ 1 – 50 days) Rela4on P-L : variaons of luminosity L, Teff, and distance calibrator radius. Enveloppe 2 The pulsaon (κ mechanism) log(κR in g/cm ) 2 • in the external part of the stellar envelope 1.5 • linked to an increase of the opacity 1 4 6 -7 -2 3 0.5 10 < T < 10 K (10 < ρ < 10 g/cm ) 0 Hence radiaon is blocked in the internal layers, -> heang -> expansion and beang Core 34 32 30 28 log(External Mass in g ) 2 In the 90’, no code was able Temperature in K, κ in cm /g for M* = 5 M8, Y=0.25, Z=0.08, to reproduce the pulsa6on.
    [Show full text]
  • Historical Perspective on the United States Fusion Program
    Historical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th Topical Meeting on the Technology of Fusion Energy 14-16 September, 2004 in Madison, WI Stephen O. Dean Fusion Power Associates, 2 Professional Drive, Suite 249, Gaithersburg, MD 20879 [email protected] A variety of methods to heat the nuclei to the Progress and Policy is traced over the approximately high speeds (kinetic energies) required to penetrate the 55 year history of the U. S. Fusion Program. The Coulomb barrier have been successfully utilized, classified beginnings of the effort in the 1950s ended with including running a high current through an ionized declassification in 1958. The effort struggled during the hydrogen gas ("ohmic heating"), accelerating beams of 1960s, but ended on a positive note with the emergence of nuclei, and using radio-frequency power. Temperatures the tokamak and the promise of laser fusion. The decade well in excess of the 50 million degrees needed for fusion of the 1970s was the “Golden Age” of fusion, with large are now routinely achieved. budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor II. THE 1960s AND 1970s (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy During the decade of the 1960s, and continuing Engineering Act of 1980, overwhelming approved by to the present, scientists developed a whole new branch of Congress and signed by President Carter. The Act called physics, called plasma physics [3], to describe the for a “$20 billion, 20-year” effort aimed at construction behavior of these plasmas in various magnetic of a fusion Demonstration Power Plant around the end of configurations, and sophisticated theories, models and the century.
    [Show full text]
  • Inertial Fusion Power Development:Path for Global Warming Suppression
    Inertial Fusion Power Development:Path for Global Warming Suppression EU:France, UK,etc. US: LLNL, SNL, U. Rochester East Asia: Japan, China,etc. Kunioki Mima Institute of Laser Engineering, Osaka University IAEA- FC 2008, 50 years’ Ann. of Fusion Res. , Oct.15, 2008, Geneva, SW Outline • Brief introduction and history of IFE research • Frontier of IFE researches Indirect driven ignition by NIF/LMJ Ignition equivalent experiments for fast ignition • IF reactor concept and road map toward power plant IFE concepts Several concepts have been explored in IFE. Driver Irradiation Ignition Laser Direct Central hot spark Ignition HIB Indirect Fast ignition Impact ignition Pulse power Shock ignition The key issue of IFE is implosion physics which has progressed for more than 30 years Producing 1000times solid density and 108 degree temperature plasmas Plasma instabilities R Irradiation non-uniformities Thermal transport and ablation surface of fuel pellet ΔR R-M Instability ΔR0 R-T instability R0 R Feed through R-M and R-T Instabilities in deceleration phase Turbulent Mixing Canter of fuel pellet t Major Laser Fusion Facilities in the World NIF, LLNL, US. LMJ, CESTA, Bordeaux, France SG-III, Menyang,CAEP, China GXII-FIREX, ILE, Osaka, Japan OMEGA-EP, LLE, Rochester, US HiPER, RAL, UK Heavy Ion Beam Fusion: The advanced T-lean fusion fuel reactor Test Stand at LBNL NDCX-I US HIF Science Virtual National Lab.(LBNL, LLNL,PPPL) has been established in 1990. (Directed by G Logan) • Implosion physics by HIB • HIB accelerator technology for 1kA, 1GeV, 1mm2 beam: Beam brightness, Neutralization, NDCX II Collective effects of high current beam, Stripping.(R.Davidson etal) • Reactor concept with Flibe liquid jet wall (R.Moir: HYLIF for HIF Reactor) History of IFE Research 1960: Laser innovation (Maiman) 1972: Implosion concept (J.
    [Show full text]
  • Nova Laser Technology
    Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier­ (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high­ neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level.
    [Show full text]
  • ENGINEERING DESIGN of the NOVA LASER FACILITY for By
    ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system.
    [Show full text]
  • Lasers Join the Quest for Fusion Energy
    1974 Lasers and ICF Lasers Join the Quest to gain a better understanding of laser plasma physics and thermonuclear physics and to demonstrate for Fusion Energy laser-induced compression and thermonuclear burn of deuterium–tritium. It was also used to improve the LASNEX computer code developed for laser With the goal of achieving energy gain fusion predictions. Janus was just the In 1975, the one-beam Cyclops laser through inertial confinement fusion beginning of the development, in quick began operation, performing important (ICF) as its mission, the Laser Program succession, of a series of lasers, each target experiments and testing optical constructed its first laser for ICF building on the knowledge gained from designs for future lasers. The next year, experiments in 1974. Named Janus, the last, leading to the National Ignition the two-beam Argus was built. Use of the two-beam laser was built with about Facility (NIF), currently performing Argus increased knowledge about laser– 100 pounds of laser glass. experiments. The pace of laser target interactions and laser propagation The first Livermore laser for construction matched the growth limits, and it helped the ICF program prepared the Laboratory to take the With the 20-beam ICF research, Janus, had Under the leadership of John Emmett, in ICF diagnostics capabilities, develop technologies needed for the next major step, construction of the Shiva laser in 1977, the two beams and produced who headed the Laser Program from computer simulation tools, and next generation of laser fusion systems. 192-beam NIF (see Year 1997), where Laboratory established 10 joules of energy.
    [Show full text]
  • The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica
    The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica by Weiran Duan A thesis submitted in partial fulfilment for the requirements for the degree of PhD at the University of Central Lancashire October 2014 2 To my family i Declaration I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution. I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work. Weiran Duan ii Abstract High peak power laser systems, such as National Ignition Facility (NIF), Laser Mega Joule (LMJ), and High Power laser Energy Research facility (HiPER), include a large amount of optics. Fused silica glass is one of the most common optical materials which is used in these high peak power laser systems owing to its excellent optical properties, especially for the 355nm ultraviolet laser. However, it is generally found that fused silica optics damage under irradiation with a high peak power laser beam, and the laser induced damage (LID) becomes the limit to increasing the laser power. Theoretically, the laser induced damage threshold (LIDT) of fused silica substrates is high, while it drops significantly due to the poor surface quality created in the manufacturing process. This project aims to find a series of fused silica optical surface processing techniques which are able to improve the surface quality and increase its LIDT when irradiated using high peak power lasers.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • X-Ray Lasing: the Novette Laser
    X-Ray Lasing: The Novelle Laser Although the Novette laser system served primarily as a test bed for advanced concepts of targets and lasers for the Nova system, its flexibility enabled us to use it for research that led to the world's first demonstration of x-ray lasing. ver the past decade, we have harmonic conversion for producing For further information contact built a series of ever more light of higher frequencies (that is, Kenneth R. Manes (415) 423-6207. O powerful and complex laser shorter wavelengths). With Novette, systems Ganus, Argus, Shiva, and now we demonstrated a system for Nova) devoted to research on inertial routinely generating powerful beams confinement fusion (ICF) and weapon of green (0.53-pm) and ultraviolet physics. However, the Novette laser (0.35- and 0.26-pm) light, greatly Fig. 1 system (Fig. 1) did not fit neatly into broadening the range of feasible Artist's rendering of the business end of this series. Although it shared physics experiments. We confirmed the Novette laser system, showing the target characteristics of the other lasers, such that laser-plasma coupling, and chamber, the harmonic-conversion arrays, and the extensive diagnostic instrumentation. as master-oscillator power-amplifier therefore the performance of the rCF The laser amplifier chains are out of the (MOPA) architecture, neodymium­ capsules, is greatly enhanced if green picture, folded trombone style to fit into the glass amplifiers, and a 1.053-pm or ultraviolet light is used instead of available space. fundamental wavelength, in many ways Novette was considerably less complex than its predecessor, the Shiva laser.
    [Show full text]
  • Radiation Safety Plan
    RADIATION SAFETY PLAN ENVIRONMENTAL NOVA SOUTHEASTERN HEALTH AND SAFETY UNIVERSITY POLICY/PROCEDURE POLICY/PROCEDURE TITLE: Radiation Safety Plan NUMBER: 9 DOCUMENT HISTORY OWNER: Facilities Management/AHIS Date: 1 Sept 2011 APPROVED: NSU Radiation Safety Committee Date: 1 Sept 2011 IMPLEMENTED: Date: 1 Oct 2010 RETIRED: Date: Date: Revision No. Review / Changes Reviewer 1/2017 1 Remove Gamma Irradiator reference RSO-5 form RSC 1/2017 2 Change EHS Committee to Radiation Safety RSC Committee (RSC) 1/2017 3 Change references from EHS to RSO RSC 4/2019 4 Edit section 5.4 to remove shipping building RSO RADIATION SAFETY PLAN RADIATION SAFETY PLAN Table of Contents Section 1: Introduction ........................................................................................................ 4 Section 2: Biological Effects and Exposure Protection ......................................................... 9 Section 3: Responsibilities ................................................................................................. 12 Section 4: License Requirements ....................................................................................... 15 Section 5: Authorization and Procurement of Radioactive Materials ................................ 16 Section 6: Training ............................................................................................................. 19 Section 7: Personnel Monitoring and Occupational Dose Limits ....................................... 22 Section 8: Signs and Labels ...............................................................................................
    [Show full text]
  • 2Fi Lawrence Livermore Laboratory I*^P^*S
    V PREPRINT UCRL- 77944 Ur,\>\--m'>te^-2fi Lawrence Livermore Laboratory STATUS OF LARGE NEODYHIUM GLASS LASERS James A. Glaze, William W. Simmons and Wilhelm F. Hagen March ID, 1976 mm This Paper was Prepared for Submission to the Society of Photo-Optical Instrumentation Engineers SPIE Meeting, Reston, VA March 22-23, 1976 This is a preprint ot a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. i*^P^*S' ««*- -»v«>*^_ DiSTRiKUTiONC; 7602 STATUS OF LARGE NEODYMIUM GLASS LASERS* •ponum] by llw Van* Stu „ o| M[l Blmc*i ng PttritrmtM A« Canes A. Glaje, William H. Simmons and Wlhelm F. Hagen uitKnnmtion. 01 IIKU tiqitiqRt, Laser Fusion Division, Lawrence Livermore Laboratory nmnir. <ieir» 01 tngfttd Llvermore, California 94550 *IR£t» ottTIfcnitttllly f.tth mrnw en>,«l* owned (HJHi. Introduction The Nd:Glass laser is used extensively throughout the world for laser fusion and laser plasma Inter­ action studies. Its popularity, to a large extent, stems from the fact that 1t 1s capable of operating reliably in the subnanosecond-terawatt power regime. In addition, the technology necessary to combine a large number of laser chains to produce a system capable of multi-terawatt performance currently exists and is being applied. At the Lawrence Livermore Laboratory two large laser systems are currently in operation and two are under construction. The OANUS and CYCLOPS systems produce 0.5 and 1 terawatt of focusable power 1n 0.1 ns respectively.
    [Show full text]
  • Signature Redacted %
    EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM ARCHW.$ By MASS ACHUSETTS INSTITUTE Lauren A. Merriman I OF IECHNOLOLGY MAY U6 2015 SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING I LIBR ARIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2015 Lauren A. Merriman. All Rights Reserved. - The author hereby grants to MIT permission to reproduce and to distribute publicly Paper and electronic copies of this thesis document in whole or in part. Signature of Author:_ Signature redacted %. Lauren A. Merriman Department of Nuclear Science and Engineering May 22, 2014 Signature redacted Certified by:. Dennis Whyte Professor of Nuclear Science and Engineering I'l f 'A Thesis Supervisor Signature redacted Accepted by: Richard K. Lester Professor and Head of the Department of Nuclear Science and Engineering 1 EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM By Lauren A. Merriman Submitted to the Department of Nuclear Science and Engineering on May 22, 2014 In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Nuclear Science and Engineering ABSTRACT Fusion has been "forty years away", that is, forty years to implementation, ever since the idea of harnessing energy from a fusion reactor was conceived in the 1950s. In reality, however, it has yet to become a viable energy source. Fusion's promise and failure are both investigated by reviewing the history of the United States domestic fusion program and comparing technological forecasting by fusion scientists, fusion program budget plans, and fusion program budget history.
    [Show full text]