Signature Redacted %
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellarators. Present Status and Future Planning
STELLARATORS Present Status and Future Planning H. Wobig, Garching IMax-Planck-Institut für Plasmaphysikl magnetic axis Fig. 1 — Period of toroidally dosed magnetic surfaces. The stellarator is a closed toroidal device open-ended configurations like mirror ma designed to confine a hot plasma In a ma chines (see EN, 12 8/9) there are always gnetic field. It is one of the oldest concepts plasma particles which escape the confine magnetic surfaces is investigated by field to have been investigated in the search for ment volume along the magnetic field and line integration. The topology of the field controlled thermonuclear fusion. an isotropic distribution function cannot be lines is determined by the rotational trans The basic idea of the stellarator was maintained. If this anisotropy is too strong form or twist number 1/27t (or+), which is developed by Lyman Spitzer, Professor of it gives rise to instabilities and enhanced the number of revolutions of a field line Astronomy at Princeton in 19511). Experi plasma losses. It is mainly to avoid these around the magnetic axis during one toroi mental studies began in 1952 and after the disadvantages that toroidal confinement dal revolution. declassification of fusion research in 1958 has been preferred. The need for a helical field can be under the idea was picked up by other research In toroidal configurations, the currents stood from a look at the particle orbits. groups. In Europe, the first stellarators which generate the confining magnetic Charged particles tend to follow the field were built in the Max-Planck Institute for fields can be classified under three lines and unless these are helical, because Physics and Astrophysics in Munich and categories : of inhomogeneities, the particles will drift later at Culham, Moscow and Karkhov. -
Superconducting Magnets Research for a Viable US Fusion Program Joseph V
Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1, Leslie Bromberg1, Peter J. Lee2, David C. Larbalestier2, Introduction Magnet systems are the ultimate enabling technology for magnetic confinement fusion devices. Powerful magnetic fields are required for confinement of the plasma, and, depending on the magnetic configuration, dc and/or pulsed magnetic fields are required for plasma initiation, ohmic heating, inductive current drive, plasma shaping, equilibrium and stability control. Almost all design concepts for power producing commercial fusion reactors rely on superconducting magnets for efficient and reliable production of these magnetic fields. Future superconducting magnets for fusion applications require improvements in materials, components, and configurations to significantly enhance the feasibility and practicality of fusion reactors as an energy source. A demonstration of large-scale demountable High Temperature Superconducting (HTS) magnets could revolutionize fusion energy development, dramatically reducing program cost and development time. Background OFES established and maintained a robust magnet technology development for several decades. Until the end of the ITER EDA (1998), the magnet technology R&D program was arguably the most successful of all enabling magnet technology programs. Most of the laboratories and universities performing superconducting magnet R&D had robust programs. A major milestone was the first (and only) successful operation of the massive superconducting magnet system for MFTF-B at LLNL in 1986. The high point was the successful completion (1999) and operation (2000) of the ITER CS Model Coil (CSMC). Since that time, funding for the development of superconducting magnets and almost all other enabling technologies has been on a steady decline, leading to the proposed magnet technology budget for FY 2013 of $765,000 or 0.19% of the total fusion budget. -
Richard G. Hewlett and Jack M. Holl. Atoms
ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12. -
ERC Implementing Arrangements Call for Expression of Interest 2017
ERC Implementing Arrangements Call for Expression of Interest 2017 Project ID: Project Acronym: Evaluation Panel: 681178 G-EDIT LS1 Principal Investigator: Dr Mariusz Nowacki Host Institution: Universitat Bern - CH Mechanisms of RNA-guided genome editing in eukaryotes The goal of this project is to contribute to our understanding of RNA-mediated epigenetic mechanisms of genome regulation in eukaryotes. Ciliated protozoa offer a fantastic opportunity to investigate the complex process of trans-generational programming of chromosomal rearrangements, which is thought to serve as a form of immune defense against invasive DNA. Developmental processes in ciliates include extensive rearrangements of the germline DNA, including elimination of transposons and the precise excision of numerous single-copy elements derived from transposons. This process is considered to be maternally controlled because the maternal genome provides essential information in the form of RNA that determines the offspring's genome content and organization. This programmed DNA subtraction, the so-called ‘RNA scanning’ process, is mediated by trans-generational comparison between the germline and the maternal somatic genome. One of the most intriguing questions is how a complex population of small RNAs representing the entire germline genome can be compared to the entire rearranged maternal genome, resulting in the efficient selection of germline-specific RNAs, which are able to target DNA deletions in the developing genome. All this occurs in a very short time and involves a massively coordinated transport of all the components between three types of nuclei. This project focuses on characterizing the molecular machinery that can orchestrate the massive genome rearrangements in ciliates through nucleic acids and protein interactions. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
Conceptual Design Report on JT-60SA ___1. JT-60SA
Conceptual Design Report on JT-60SA ________ 1. JT-60SA Mission and Program 1.1 Introduction Realization of fusion energy requires long-term research and development. A schematic of fusion energy development is shown in Fig. 1.1-1. Fusion energy development is divided into 3 phases before commercialization. The large Tokamak phase achieved equivalent break-even plasmas in JET and JT-60 and significant DT Power productions in TFTR and JET. A programmatic objective of the ITER phase is demonstration of scientific and technical feasibility of fusion energy. A primary objective of the DEMO phase is to demonstrate power (electricity) production in a manner leading to commercialization of fusion energy. The fast track approach to fusion energy is to shorten its development period for fusion energy utilization by adding appropriate programs (BA program) in parallel with ITER. Program elements are advanced tokamak/simulation studies and fusion technology/material development. Fig. 1.1-1 Schematic of fusion energy development To specify program elements needed in parallel with ITER, we have to identify the concept of DEMO. Typical DEMO concepts of Japan and EU are shown in Fig.1.1-2. Although size spans widely, operation mode is unanimously “steady-state”. Ranges of the normalized beta are pretty close each other, βN=3.5 to 4.3 for JA DEMO and 3.4 to 4.5 for EU DEMO. Fig. 1.1-2 Cross section and parameters of JA-EU DEMO studies ave 2 The neutron wall load of DEMO exceeds that of ITER (Pn =0.57MW/m ) by a factor of 3-6. -
Thermonuclear AB-Reactors for Aerospace
1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. -
Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Labo
Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Labo... APPENDIX A DESCRIPTION OF MAJOR PROGRAMS AND FACILITIES Appendix A describes the programs, infrastructures, facilities, and future plans of Lawrence Livermore National Laboratory (LLNL) and the Sandia National Laboratories at Livermore (SNL, Livermore). It provides information on existing activities and facilities, as well as information on those activities anticipated to occur or facilities to be constructed over the next 5 to 10 years. The purpose of this appendix is to: present information that can be used to evaluate the proposed action and other EIS/EIR alternatives, identify activities that are part of the proposed action, distinguish proposed action activities from no action alternative activities, and provide supporting documentation for less detailed descriptions of these activities or facilities found in other sections and appendices of the EIS/EIR. Figure A-1 illustrates how this appendix interfaces with other sections and appendices of this EIS/EIR. Most LLNL and all SNL, Livermore operations are located at sites near Livermore, California. LLNL also operates LLNL Site 300 near Tracy, California, and conducts limited activities at several leased properties near the LLNL Livermore site, as well as in leased offices in Los Angeles, California, and Germantown, Maryland. Figure A-2 and Figure A-3 show the regional location of the LLNL Livermore site, LLNL Site 300, and SNL, Livermore and their location with respect to the cities of Livermore and Tracy. While they are distinct operations managed and operated by different contractors, for purposes of this document LLNL Livermore and SNL, Livermore sites are addressed together because of their proximity. -
Tokamak Foundation in USSR/Russia 1950--1990
IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003 Tokamak foundation in USSR/Russia 1950–1990 V.P. Smirnov Nuclear Fusion Institute, RRC ’Kurchatov Institute’, Moscow, Russia Received 8 June 2009, accepted for publication 26 November 2009 Published 30 December 2009 Online at stacks.iop.org/NF/50/014003 In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER. (Some figures in this article are in colour only in the electronic version) At the opening ceremony of the United Nations First In the USSR, NF research began in 1950. -
A European Success Story the Joint European Torus
EFDA JET JETJETJET LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION DEVELOPEMENT AGREEMENT THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA Fusion: the Energy of the Sun If the temperature of a gas is raised above 10,000 °C virtually all of the atoms become ionised and electrons separate from their nuclei. The result is a complete mix of electrons and ions with the sum of all charges being very close to zero as only small charge imbalance is allowed. Thus, the ionised gas remains almost neutral throughout. This constitutes a fourth state of matter called plasma, with a wide range of unique features. D Deuterium 3He Helium 3 The sun, and similar stars, are sphe- Fusion D T Tritium res of plasma composed mainly of Li Lithium hydrogen. The high temperature, 4He Helium 4 3He Energy U Uranium around 15 million °C, is necessary released for the pressure of the plasma to in Fusion T balance the inward gravitational for- ces. Under these conditions it is pos- Li Fission sible for hydrogen nuclei to fuse together and release energy. Nuclear binding energy In a terrestrial system the aim is to 4He U produce the ‘easiest’ fusion reaction Energy released using deuterium and tritium. Even in fission then the rate of fusion reactions becomes large enough only at high JG97.362/4c Atomic mass particle energy. Therefore, when the Dn required nuclear reactions result from the thermal motions of the nuclei, so-called thermonuclear fusion, it is necessary to achieve u • extremely high temperatures, of at least 100 million °C. -
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R. -
Preprint , Lawrence Ijvermore Laboratory
/ UCRL - 76z1° Rev 1 Thin is n preprint of a paper intended for publication in a journal or proceedings. Since changes may be made PREPRINT , before publication, this preprint is made Available with the understanding that it wiii not be cited or reproduced without the permission of the author. is LAWRENCE IJVERMORE LABORATORY Universityat' CaMornm/Livermore.Catifornia LASER PLASMA EXPERIMENTS RELEVANT TO LASER PRODUCED IMPLOSIONS H. G. Ahlstrom, J. F. Holzrichter, K. R. Manes, L. W. Colenan, D. R. Speck, R. A. Haas, and H. D. Shay November 7, 1974 - NOTICE - This repori was prepared as an account of wink sponsored by the United Slates Gimtrnmem. Scithct the United Slates nor the United Stales Energy Research and Development Administration, nor any of their employees, nor any <if their contractors, subcontractors, or Iheir employees, makes any warranty, express or implied, or assumes any lepal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents thjl its use would not infringe privately owned rights. This Paper Was Prepared For Submission To The Fifth Conference On Plasma Physics and Controlled Nuclear Fusion Research Tokyo, Japan - November 11-15, 1974 L/\vy. PU-VA rvPFn.nr';T? RELLVA;:T "TO LASH "POr,fT[|-, nPLDSlOIC* s II. '?. Ahlstroni, J. P. Hol.-ri enter, K. Mgnes. L. W. Col"man, "•. P. Speck, P. A. Haas, and H. ">. Shay i.r.-.rertce l.iven-ore Laboratory, t'niversity o*7 "aliforn Livermot?, California <»<I55'J November 7. 1974 ABSTPACT Preliminary lasor taraet interaction studies desinned to nrr ide co;l« normalization data in a reoine of interest to Ifiser fusion a- nyortP-1.