Generalized Pan-European Geological Database for Shallow Geothermal Installations

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Pan-European Geological Database for Shallow Geothermal Installations geosciences Article Generalized Pan-European Geological Database for Shallow Geothermal Installations Johannes Müller 1, Antonio Galgaro 2, Giorgia Dalla Santa 2, Matteo Cultrera 2, Constantine Karytsas 3, Dimitrios Mendrinos 3, Sebastian Pera 4, Rodolfo Perego 4, Nick O’Neill 5, Riccardo Pasquali 5, Jacques Vercruysse 6, Leonardo Rossi 7, Adriana Bernardi 8 and David Bertermann 1,* ID 1 GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nuremberg, Schlossgarten 5, 91054 Erlangen, Germany; [email protected] 2 Department of Geosciences, Universita degli Studi di Padova, Via Gradenigo 635131 Padova, Italy; [email protected] (A.G.); [email protected] (G.D.S.); [email protected] (M.C.) 3 Centre for Renewable Energy Sources and Saving, 19th km Marathonos Ave, 19009 Pikermi Attiki, Greece; [email protected] (C.K.); [email protected] (D.M.) 4 SUPSI, Stabile Le Gerre, Manno 6928, Switzerland; [email protected] (S.P.); [email protected] (R.P.) 5 SLR Environmental Consulting (Ireland) Limited (SLR), 7 Dundrum Business Park, Windy Arbour 14, D14 N2Y7 Dublin, Ireland; [email protected] (N.O.N.); [email protected] (R.P.) 6 GEO-GREEN sprl, Rue de Priesmont 63, 1495 Marbais, Belgium; [email protected] 7 Pietre Edil, Strada Slănic nr.2, 030242 Bucures, ti, Romania; [email protected] 8 CNR-ISAC, Corso Stati Uniti 435127 Padova, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-25824 Received: 18 December 2017; Accepted: 17 January 2018; Published: 22 January 2018 Abstract: The relatively high installation costs for different types of shallow geothermal energy systems are obstacles that have lowered the impact of geothermal solutions in the renewable energy market. In order to reduce planning costs and obtain a lithological overview of geothermal potentials and drilling conditions, a pan-European geological overview map was created using freely accessible JRC (Joint Research Centre) data and ArcGIS software. JRC data were interpreted and merged together in order to collect information about the expenditure of installing geothermal systems in specific geological set-ups, and thereby select the most economic drilling technique. Within the four-year project of the European Union’s Horizon 2020 Research and Innovation Program, which is known as “Cheap-GSHPs” (the Cheap and efficient application of reliable Ground Source Heat exchangers and Pumps), the most diffused lithologies and corresponding drilling costs were analyzed to provide a 1 km × 1 km raster with the required underground information. The final outline map should be valid throughout Europe, and should respect the INSPIRE (INfrastructure for SPatial InfoRmation in Europe) guidelines. Keywords: GSHP systems; ground heat exchanger; ArcGIS; drillability; thermal conductivity 1. Introduction Nowadays, geothermal energy is one of the most seminal renewable energy sources, due to its high potential and multiple uses. With the aim of both reducing the overall costs of shallow geothermal systems and improving their installation safety, a European project is recently undertaken, under the Horizon 2020 EU framework program for Research and Innovation. The “Cheap-GSHPs” (the Cheap and efficient application of reliable Ground Source Heat exchangers and Pumps) project (http://cheap-gshp.eu/) involves 17 partners among nine European countries: Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, and Switzerland. The project is financed for four Geosciences 2018, 8, 32; doi:10.3390/geosciences8010032 www.mdpi.com/journal/geosciences Geosciences 2018, 8, 32 2 of 15 Geosciences 2018, 8, x FOR PEER REVIEW 2 of 15 years,Belgium, for the France, period Germany, between Greece, June 2015Ireland, and Italy, May Romania, 2019. In Spain, order and to achieveSwitzerland. the plannedThe project targets, is a holisticfinanced approach for four isyears, adopted, for the where period all between of the involved June 2015 elements and May in 2019. shallow In order geothermal to achieve activities the areplanned integrated. targets, Since a holistic the technical approa feasibility,ch is adopted, total where performance, all of th ande involved installation elements costs in are shallow affected enormouslygeothermal by activities underground are integrated. properties, itSince is indispensable the technical to havefeasibility, detailed total information performance, about and these parameters.installation Basedcosts are on affected information enormously provided by byunder theground partners, properties, drilling costsit is indispensable differ from countryto have to countrydetailed as ainformation function of about the maturity these parameters. of the market, Based the soilson information and near-surface provided geology, by the the partners, hydrology, drilling costs differ from country to country as a function of the maturity of the market, the soils and and the competitiveness of the drilling companies. The general aim of the project is to reduce the near-surface geology, the hydrology, and the competitiveness of the drilling companies. The general overall cost up to 20%. In order to reach that goal, installation techniques on the construction site are aim of the project is to reduce the overall cost up to 20%. In order to reach that goal, installation reviewed and rectified where applicable. Also, the probe and backfilling materials will be examined in techniques on the construction site are reviewed and rectified where applicable. Also, the probe and terms of cost-saving adjustments, with at least the same or better performance than standard materials. backfilling materials will be examined in terms of cost-saving adjustments, with at least the same or In orderbetter toperformance reduce the than drilling standard costs, newmaterials. helicoidal In orde andr to coaxial reduce GSHEs the drilling (ground costs, source new heathelicoidal exchangers) and arecoaxial developed GSHEs within (ground the project.source heat These exchangers) types of GSHE are developed are expected within to reduce the project. installation These costs,types sinceof theyGSHE can are be installedexpected to at reduce a much installation shallower costs, depth sinc thane they standard can be installed double-U at a probes. much shallower As for double-U depth probes,than standard the drilling double-U costs reachprobes. almost As for40% double-U of total probes, installation the drilling costs costs of a reach new geoexchangealmost 40% of systemtotal (Figureinstallation1)[1]. costs of a new geoexchange system (Figure 1) [1]. FigureFigure 1. 1.European European average average costs costs of of a astandard standard geothermalgeothermal installation outside outside the the house house (+in-house (+in-house locatedlocated heat heat pump pump [1 [1]).]). SinceSince it isit veryis very important important to to keep keep drilling drilling costs costs low low from from an an economic economic point point of of view, view, the the drillers drillers and plannersand planners need to need have to access have toaccess reliable to reliable data about data the about underground. the underground. This is anThis important is an important challenge, challenge, as stratigraphy can be widely varied between different locations. Therefore, it is as stratigraphy can be widely varied between different locations. Therefore, it is recommended to recommended to choose the drilling technique based on the physical properties of the underground choose the drilling technique based on the physical properties of the underground to avoid extra to avoid extra financial burden. financial burden. To extrapolate these issues on a European scale, it is also important to provide a homogenous To extrapolate these issues on a European scale, it is also important to provide a homogenous data data set that is valid within all of the participating project partner countries to provide local setpredictions that is valid about within expenditure. all of the Additionally, participating the project resolution partner of underground countries to specific provide data local sets predictions has to be aboutaccurate. expenditure. Soil and Additionally,rock properties the can resolution change very of underground rapidly within specific a small data area. sets Within has tothis be project, accurate. Soilnewly and developed rock properties heat basket-type can change GSHEs very should rapidly reach within around a small 15 m depth area. [2]. Within Hence, this the project, challenge newly is developedto map small-scale, heat basket-type eventually GSHEs vertical, should undergrou reachnd around variability 15 m versus depth [a2 ].European-wide Hence, the challenge demand of is to mapdata, small-scale, in combination eventually with vertical, relevant underground data for th variabilitye improvements versus of a European-widethe economic factors demand of of the data, ininstallation combination of shallow with relevant geothermal data heating for the and improvements cooling systems. of the At economica later stage factors of the “Cheap-GSHPs” of the installation ofproject, shallow the geothermal final map heatingwill be im andplemented cooling systems.into the DSS At a(Decision later stage Support of the System) “Cheap-GSHPs” of the project’s project, thehomepage. final map Therefore, will be implemented interested users into can the select DSS (Decisiontheir property’s Support location, System) and of the the DSS project’s will pick homepage. up the Therefore,required
Recommended publications
  • User Guide: Soil Parent Material 1 Kilometre Dataset
    CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive User Guide: Soil Parent Material 1 kilometre dataset. Environmental Modelling Internal Report OR/14/025 BRITISH GEOLOGICAL SURVEY ENVIRONMENTAL Modelling INTERNAL REPORT OR/14/025 User Guide: Soil Parent Material 1 kilometre dataset. The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2012. Ordnance Survey Licence R. Lawley. No. 100021290. Keywords Contributor/editor Parent Material, Soil,UKSO. B. Rawlins. National Grid Reference SW corner 999999,999999 Centre point 999999,999999 NE corner 999999,999999 Map Sheet 999, 1:99 000 scale, Map name Front cover Soil Parent Material 1km dataset. Bibliographical reference LAWLEY., R. USER GUIDE: SOIL PARENT Material 1 Kilometre dataset. 2012. User Guide: Soil Parent Material 1km dataset.. British Geological Survey Internal Report, OR/14/025. 20pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, email [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2014. All rights reserved Keyworth, Nottingham British Geological Survey 2012 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.
    [Show full text]
  • CARBONATE RESERVOIR ROCK PROPERTIES Fundamental Rock
    CARBONATE RESERVOIR ROCK PROPERTIES Fundamental rock properties include texture, composition, sedimentary structures, taxonomic diversity, and depositional morphology. The last two properties are not commonly listed as “fundamental rock properties”in most texts but they are important attributes of sedimentary deposits that must be included in thorough reservoir studies. Fundamental rock properties provide the basis for defining lithofacies, or lithogenetic units that make up depositional reservoirs. Diagenetic and fractured reservoirs are simply altered versions of the original depositional version. The most reliable method for identifying these fundamental properties in carbonates is direct observation of cores or cuttings. Cores provide enough sample volume to determine sedimentary textures, grain types, sedimentary structures, and biota. Cuttings usually provide enough volume to determine mineralogy, grain types, and estimates of texture. Logs are not very helpful in identifying fundamental rock properties in carbonates. Facies types can be identified in siliciclastic sandstones by using the shape of the gamma ray and resistivity or, with older logs, the SP – resistivity log traces. When the paired traces outline a bell, a funnel, or a cylinder, the corresponding sandstone facies are assumed to be channel - fill, deltaic, or reworked sheet sands, respectively. Other “typecurves” are assumed to be indicators of other of sand – shale depositional successions. The underlying assumption is that the gamma ray, SP, and resistivity logs are sensitive to vertical changes in grain size. In fact, that assumption is false. The logs are not sensitive to grain size. The gamma ray tool measures natural radioactivity that issues from the K, Th, and U found in clay minerals that are commonly incorporated in shales and mudrocks.
    [Show full text]
  • NBN EN 12670 : Natural Stone
    ICS: 01.040.73; 01.040.91;; 73.020 91.100.15 Geregistreerde NBN EN 12670 Belgische norm 1e uitg., februari 2002 Normklasse : B 17 Natuursteen - Terminologie Pierre naturelle - Terminologie Natural stone - Terminology Toelating tot publicatie : 12 februari 2002 Deze Europese norm EN 12670 : 2001 heeft de status van een Belgische norm. Deze Europese norm bestaat in drie officiële versies (Duits, Engels, Frans). Belgisch instituut voor normalisatie (BIN) , vereniging zonder winstoogmerk Brabançonnelaan 29 - 1000 BRUSSEL - telefoon: 02 738 01 12 - fax: 02 733 42 64 e-mail: [email protected] - BIN Online: www.bin.be - prk. 000-0063310-66 © BIN 2002 Prijsgroep : 21 EUROPEAN STANDARD EN 12670 NORME EUROPÉENNE EUROPÄISCHE NORM December 2001 ICS 01.040.73; 01.040.91; 73.020; 91.100.15 English version Natural stone - Terminology Pierre naturelle - Terminologie Naturstein - Terminologie This European Standard was approved by CEN on 20 October 2001. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.
    [Show full text]
  • Africa Soil Profiles Database Version 1.1
    Africa Soil Profiles Database Version 1.1 A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset) ISRIC Report 2013/03 ISRIC – World Soil Information has a mandate to serve the international community as custodian of global soil information and to increase awareness and understanding of soils in major global issues. More information: www.isric.org J.G.B. Leenaars ISRIC – World soil Information has a strategic association with Wageningen UR (University & Research centre) Africa Soil Profiles Database Version 1.1 A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset) J.G.B. Leenaars ISRIC Report 2013/03 Wageningen, 2013 © 2013, ISRIC – World Soil Information, Wageningen, Netherlands All rights reserved. Reproduction and dissemination for educational or non-commercial purposes are permitted without any prior written permission provided the source is fully acknowledged. Reproduction of materials for resale or other commercial purposes is prohibited without prior written permission from ISRIC. Applications for such permission should be addressed to: Director, ISRIC – World Soil Information PO B0X 353 6700 AJ Wageningen The Netherlands E-mail: [email protected] The designations employed and the presentation of materials do not imply the expression of any opinion whatsoever on the part of ISRIC concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Despite the fact that this publication is created with utmost care, the authors(s) and/or publisher(s) and/or ISRIC cannot be held liable for any damage caused by the use of this publication or any content therein in whatever form, whether or not caused by possible errors or faults nor for any consequences thereof.
    [Show full text]
  • Cat Herding on a Global Scale
    OneGeology-Europe – an INSPIRE testbed for semantic harmonisation of „geology“ data across Europe (WP 3) Kristine Asch and John Laxton Project deliverables • Interoperable on- shore geology spatial dataset • with ”progress • Mutilingual metadata for towards discovery harmonisation” • View services • Forerunner and “guinea • Geological pig” for the vocabulary and data implementation of specifications for INSPIRE Directive Europe • Use case studies Fact Vast amount of data hidden in the archives and hard disks in governmental organisations across Europe … Kristine Asch ©BGR.de And they are all different.. Edge matching at national boundaries? Î National boundary Î geological terms and classifications (age, lithology, tectonics ..) Î age of data (mapping campaign) Î choice of units to be mapped Î level of detail / scale Î topographical base (projection, spheroid, drainage system, ...) Î Portrayal (colours and symbols) Î Mapped border of the units Interoperability and harmonisation • Interoperability – when the data model/structure and properties to describe its parts (what GeoSciML does) is agreed – E.g. agreeing a data model will have the feature of “GeologicUnit” with properties of “age” and “lithology” • Semantic harmonisation – when the use of the same definitions and classifications to describe a concept/term is agreed – E.g. ‘clay’. The same concept can be labelled with several terms (“argilla” in Italian, “Ton” in German), but needs to have the same definition, in this case of “clay/Ton/argilla, …”): > 50% particles < 0,004 mm (Wentworth
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • A Textural Classification of Argillaceous Rocks and Their Durability
    1 2 A textural classification of argillaceous rocks and their durability 3 4 Jordi Corominas1, Joan Martínez-Bofill1,2, Albert Soler3 5 6 (1) Department of Geotechnical Engineering and Geosciences. UPC-BarcelonaTech 7 (2)Geomar. Enginyeria del Terreny. SLP 8 (3) Grup de Mineralogia Aplicada i Medi Ambient, Department de Cristal·lografia, Mineralogia i Dipòstis Minerals, 9 Universitat de Barcelona. 10 11 e-mail: [email protected] ph. +(34).93.401.6861 12 13 ABSTRACT 14 15 Argillaceous rocks can display a wide range of durability behaviour after excavation and in cut slopes. In 16 this paper we propose a classification of argillaceous rocks based on their textural characteristics. Three 17 main components of the classification scheme are: the clastic framework, the fine-grained matrix and the 18 cementing agent. Unlike other schemes, the unlithified argillaceous sediments are included as well. The 19 names proposed for the rocks broadly follow the existing nomenclature used in petrographic 20 classifications. The durability of some argillaceous rock types has been assessed by taking into account a 21 set of degradation features of the excavated slopes. It has been observed that the ratios of these textural 22 components exert a strong control on the long-term durability of slopes. 23 24 Key words: argillaceous rock, durability, slope deterioration, classification 25 26 27 INTRODUCTION 28 29 Argillaceous rocks are frequent in the nature. They form around two thirds of the stratigraphic column 30 (Blatt, 1982) and about one third of all rocks exposed at the earth surface (Franklin, 1983). Although 31 strictly speaking an argillaceous rock is a rock made of clay, in its practical usage it has a broader 32 meaning and it is equivalent to terms such as lutite or mudrock.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • GEOSCIENCES LEXICON English, German, Greek, Italian, Portuguese, Spanish
    1 GEOschools GEOSCIENCES LEXICON English, German, Greek, Italian, Portuguese, Spanish Multilingual 2014 Geosciences Lexicon 2 “English, German, Greek, Italian, Portuguese, Spanish” University of Zaragoza Pedro Cebruna, 12 50009‐Zaragoza (SPAIN) GEOschools is a European Union project supported by the Lifelong Web: http://www.uz.es Learning Programme which brings together geoscientists from universities, museums, geoparks, teaching training institutions and educators which can best “translate” geosciences into language and learning opportunities Ediror: that can be understood by school students. Guillermo Meléndez Authors: GEOschools Guillermo Meléndez Coordinator: Georgia Fermeli National and Kapodistrian University of Athens-Greece: Fritz Steininger Michael Dermitzakis & Georgia Fermeli Anastasia Koutsouveli Carlos Neto de Carvalho Partners: Carolina D’Arpa Committee of Geosciences Didactics of the Geological Carolina Di Patti Society of Greece: Anastasia Koutsouveli Joana Rodrigues University of Zaragoza-Spain: Michael Dermitzakis Guillermo Meléndez Hevia Amelia Calonge University of Alcalá de Henares Madrid-Spain: Amelia Calonge García University of Palermo (G.G. Gemmellaro Geological Museum)-Italy: Carolina D’Arpa & Carolina Di Patti Naturtejo European & Global Geopark-Portugal: Carlos Neto de Carvalho & Joana Rodrigues Pictures: Krahuletz Museum-Austria: Fritz Steininger Guillermo Melendez Cover page & Book design: This document is part of the Project “GEOschools-Teaching Geosciences in Georgia Fermeli Secondary Schools”. EACEA-Lifelong Learning Programme: Comenius, ICT and Languages. Nr. 510508-2010-LLP-GR-COMENIUS-CMP. Publisher: University of Zaragoza This Project was granted with the support of the European Commission. Pedro Cebruna, 12 This publication expresses authors’ opinion and the Commission cannot be responsible for any use that may be given from the information provided. 50009‐Zaragoza (SPAIN) PRINTED IN SPAIN Copyright ©: 2014 by GEOschools 3 GEOsciences Lexicon Content 1.
    [Show full text]
  • 7 Siliciclstic Sediments II: Mudrocks
    7 Siliciclastic sediments II: Mudrocks 7.1 Introduction Mudrocks are the most abundant type of sedimentary rocks, constituting about 45-55% of the sedimentary sequences. But since they are easily weathered, they are covered with vegetation and are poorly exposed. Mudrocks can be deposited in all sedimentary environments, but the majority are deposited in river floodplains, lakes, large deltas, the more distal areas of clastic shelves, basin slopes, and deep sea floors. The main constituents of mudrocks are the clay minerals and silt-grade quartz. In terms of grain size, clay refers to particles less than 4 µm in diameter, whereas silt is between 4 and 62 µm. On the other hand, clay as a mineral is a hydrous aluminosilicate with a specific sheet structure (to be discussed below). The term mud (also lutite) loosely refers to a mixture of clay- and silt-grade material. The mudstone, the indurated or lithified equivalent of mud, is a blocky, non-fissile rock, whereas shale is usually laminated and fissile (fissility is the ability of rock to split into thin sheets). Argillite is used for more indurated mudrock and slate is the metamorphic mudrock possessing a cleavage. Claystone is the sedimentary rock consisting of a clay- grade material. Siltstone consists of more silt-grade particles than clay. Calcareous mudrocks are called marls. Fig. 7.1 gives a scheme for mixed sand-silt-clay deposits. 1 Fig. 7.1: Classification of siliciclastic sediments based on sand, silt and clay content. In the field, the terms mudstone, shale, claystone and siltstone are best qualified by attributes referring to color, degree of fissility, sedimentary structures, and mineral, organic and fossil content (Tab.
    [Show full text]
  • Mapping the Storing and Filtering Capacity of European Soils
    Mapping the storing and filtering capacity of European soils András Makó, Mihály Kocsis, Gyöngyi Barna, Gergely Tóth 2017 EUR 28392 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC105121 EUR 28392 EN PDF ISBN 978-92-79-64939-4 ISSN 1831-9424 doi:10.2788/49218 Print ISBN 978-92-79-64940-0 ISSN 1018-5593 doi:10.2788/156875 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Makó, A., Kocsis, M., Barna, GY., Tóth, G.; Mapping the storing and filtering capacity of European soils; EUR 28392; doi:10.2788/49218 All images © European Union 2017 Mapping the storing and filtering capacity of European soils Authors András Makó Hungarian Academy of Sciences, Centre for Agricultural Research Mihály Kocsis University of Pannonia, Georgikon Faculty Gyöngyi Barna Hungarian Academy of Sciences, Centre for Agricultural Research Gergely Tóth European Commission, DG Joint Research Centre Table of contents Abstract .................................................................................................................
    [Show full text]
  • DNRM Report Template Portrait
    This publication has been compiled by Spatial and Graphic Services, Divisional Support, Department of Natural Resources, Mines and Energy. © State of Queensland, 2020 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Table of contents Introduction ............................................................................................................................................ 2 Tenure terminology ................................................................................................................................ 2 Geoscience terminology ......................................................................................................................
    [Show full text]