47 in Nature There Is a Wide Variety of Sedimentary Rocks and Each Type Differs from All Other Types in Terms of Physical Proper

Total Page:16

File Type:pdf, Size:1020Kb

47 in Nature There Is a Wide Variety of Sedimentary Rocks and Each Type Differs from All Other Types in Terms of Physical Proper 47 CHAPTER 3. CLASSIFICATION OF T ERRIGENOUS C LASTIC R OCKS In nature there is a wide variety of sedimentary rocks and each type differs from all other types in terms of physical properties, composition and/or mode of origin. The classification of sedimentary rocks is a necessary exercise that provides consistent nomenclature to facilitate communication between sedimentologists (i.e., the classification sets limits to the attributes of any given class) and most classification schemes are based on characteristics that have some genetic significance. This chapter briefly describes the classification of sedimentary rocks on various scales and then focuses on a particular class: terrigenous clastic sedimentary rocks. A FUNDAMENTAL C LASSIFICATION O F S EDIMENT A ND S EDIMENTARY R OCKS Figure 3-1 shows the the relationship between sedimentary rock classificaiton and the origin of the sediment that makes up the rocks. All sedimentary rocks are composed of the products of “weathering”, the process that causes the physical and/or chemical breakdown of a pre-existing rock (termed a source rock). These “products” include detrital grains (chemically stable grains) and material in solution. Detrital grains are normally dominated by quartz, with lesser amounts of feldspars, rock fragments, micaceous and clay minerals, insoluble oxides, and a small proportion (normally less than 1%) of what are termed “heavy minerals” because they have a higher density than the quartz and feldspars. The heavy minerals may be relatively non-reactive to chemical weathering but form only a small proportion of a source rock (e.g., tourmaline and zircon) or they may be less stable minerals that comprise a relatively large proportion of the source rock (e.g., the amphiboles and pyroxenes). Rock fragments (syn. lithic fragments) may include as wide a range of particles as there are source rocks but only fragments composed of relatively resistant (physically and/or chemically) minerals withstand transport over great distances. Detrital grains also include some micaceous and clay minerals and insoluble oxides that are formed by chemical reactions on the surfaces of some minerals during chemical weathering. The micaceous minerals produced by weathering are relatively unstable. However, clay minerals, dominated by kaolinite, illite and montmorillonite, and insoluble oxides, including hematite, bauxite, laterite, and gibbsite, are generally very stable. The exact composition of detrital grains produced by weathering will depend on the relative importance of chemical and physical weathering and the composition of the source rock. Sediment formed from the products of weathering are normally deposited following a period of transport to some site of deposition. The various types of sedimentary rocks may be most fundamentally classified according to the type of weathering product from which they form: as chemical sediment, composed of material that was transported in solution and deposited by precipitation from solution, or clastic sediment, that include all of the particulate products of weathering (i.e., the detrital grains produced by weathering) that are transported to their site of deposition by a variety of physical processes: by running water (rivers, currents in lakes, seas and oceans), glaciers, wind, volcanic eruptions (non-igneous rocks produced by explosions and breakage during lava flow), and gravity (e.g., landslides). The chemical sediment may be further subdivided according to the specific mode of formation. Sediment that precipitates directly from solution is termed orthochemical sediment (e.g., halite, gypsum, some limestone and dolomite) whereas those that are precipitated by organisms, to form their own shell material, are termed biogenic sediments. Biogenic sediment is dominated by calcium carbonate (i.e., they form many limestones or have been diagenetically altered to dolomite) but also include siliceous sediment (e.g., biogenic chert) composed of the exoskeletons of siliceous-shelled organisms (e.g., diatoms). Clastic sediment may also be divided into subclasses on the basis of their composition and mode of origin. The most common is the terrigenous clastic sediment, including all sediment composed of detrital grains (derived from any source rock) that were transported to their site of deposition. Clastic sediment that is derived from the products of volcanic eruptions is termed pyroclastic sediment. A third, special type, of clastic sediment that spans between clastic and biogenic sediment is the bioclastic sediment that is composed of reworked biogenic sediment (i.e., shell material that is reworked by currents). Each of these subclasses of clastic sediment can be subdivided according 48 nd Chemical w cal a eath ysi eri Ph ng Source Rock solutions solid particles detrital grains TRANSPORT clay Rivers insoluble oxides Wind Glaciers Oceanic currents Volcanic explosions DEPOSITION Precipitation Cessation of movement Chemical Sediment Clastic sediment as shell material direct from solution Terrigenous Orthochemical Biogenic Bioclastic Pyroclastic clastic sediment sediment sediment sediment sediment reworking Figure 3-1. Illustration showing the relationship between sedimentary rock classification and the origin of the sediment making up the rocks. 49 to a variety of characteristics and the remainder of this chapter will focus on the classification of terrigenous clastic sediment. However, note that many of the criteria for subdividing terrigenous clastic sediment may also be used to further subdivide pyroclastic and bioclastic sediment. CLASSIFICATION OF TERRIGENOUS CLASTIC SEDIMENT Most widely-used classifications of terrigenous clastic sediment or sedimentary rocks are based on the descriptive properties of a rock (e.g., grain size, grain shape, grain composition). The classifications summarized here are largely descriptive but they are based on properties that may have important genetic implications (see below). A descriptive classification of any rock may be made at various levels and precision. The classification of terrigenous clastic sediment and rocks given in Table 3-1 represents the simplest subdivision and is based solely on grain size (note that the boundaries between sediment/rock types are from the Udden-Wentworth grade scale). This classification should be considered a “first-order” classification and each class may be further subdivided on the basis of a variety of characteristics. Table 3-1. Classification of terrigenous clastic sediment/rocks based on grain size. Grain size1 Sediment name Rock name Adjectives (mm) >2 Gravel Rudite cobble, pebble, well-sorted, etc. 0.0625 - 2 Sand Sandstone or arenite coarse, medium, fine, well-sorted, etc. <0.0625 Mud Mudstone or lutite silt or clay 1For the purposes of this general classification we will assign the rock or sediment name shown if more than 50% of the particles are in the size range shown. More detailed classification schemes will limit terms on the basis of different proportions of sediment within a give size range (see text). CLASSIFICATION OF SANDSTONES Basis of Classification Sandstones may be further classified on the basis of the composition of the grains and the proportion of the rock that is fine-grained matrix (dominated clay size sediment), as determined by examination of specimens in thin section. The major components of most sandstones are: quartz (including chert and polycrystalline quartz), feldspars, rock fragments and matrix; most other minerals are not sufficiently stable to survive significant transport and comprise only a small proportion of grains in comparison to the major components, and are neglected in most classifications. Note that sediment with the composition described is commonly termed siliciclastic sediment. Several schemes for classifying sandstones have been proposed, based on the relative proportions of the major components listed above. Figures 3-2 and 3-3 show a classification proposed by Dott (1964), defining the compositional limits of each subclass of sandstone. Note that in this classification Dott defines matrix as all particles finer than 0.03 mm; within the range of clay-size particles. This classification limits the term arenite to rocks with less than 15% matrix while a rock with between 15% and 75% matrix is termed a “graywacke” (also spelled “greywacke” or, in German, “grauwacke”; commonly abbreviated as “wacke”). All sedimentary rocks with more than 75% matrix are termed mudstones in this scheme. The arenites and graywackes are further subdivided on the basis of the relative proportions of their major constituents (excluding matrix) by plotting their relative proportions on a ternary diagram. Figure 3-2 is rather schematic so take a close look at figure 3-3 to see the limits assigned to each subclass of arenite and graywacke. According to figure 3-3A a quartz arenite contains no less than 90% quartz grains and a subarkose contains between 5 and 25% feldspars, less than 25% rock fragments (but the proportion 50 MUDSTONES WACKES ARENITES Quartzwacke 100% Quartz arenite Quartz 75% 5 Subarkose 5 Sublitharenite 25 Arkosic wacke 25 Feldspathic Graywacke Lithic Graywacke 50 Arkose Percent matrix (<0.03 mm) 15% Arkosic Feldspars 100% Arenite Lithic Arenite 50% 100% Rock fragments Figure 3-2. Classification of sandstones. After Dott, 1964, as modified by Potter, Pettijohn and Siever, 1972. Table 3-2. Example of the treatment of data collected by determining the proportions of quartz (Q), feldspars (F), rock fragments (Rf) and matrix, as
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • Textural and Mineralogical Maturities and Provenance of Sands from the Budhi Gandaki-Narayani Nadi
    Bulletin of Department of Geology, Tribhuvan University, Kathmandu, Nepal, vol. 22, 2020, pp. 1-9. Textural and mineralogical maturities and provenance of sands from the Budhi Gandaki-Narayani Nadi. DOI: https://doi.org/10.3126/bdg.v22i0.33408 Textural and mineralogical maturities and provenance of sands from the Budhi Gandaki-Narayani Nadi, central Nepal Sanjay Singh Maharjan and Naresh Kazi Tamrakar * Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu ABSTRACT The Budhi Gandaki-Narayani Nadi in the Central Nepal flows across fold-thrust belts of the Tethys Himalaya, Higher Himalaya, Lesser Himalaya, and the Sub-Himalaya, and is located in sub-tropical to humid sub-tropical climatic zone. Within the Higher Himalayas and the Lesser Himalayas, a high mountain and hilly region give way the long high-gradient, the Budhi Gandaki Nadi in the northern region. At the southern region within the Sub-Himalayas, having a wide Dun Valley, gives way the long low-gradient Narayani Nadi. Sands from Budhi Gandaki-Narayani Nadi were obtained and analysed for textural maturity and compositional maturity. The textural analyses consisted of determining roundness and sphericity of quartz grains for shape, and determining size of sand for matrix percent and various statistical measures including sorting. The analysis indicates that the textural maturity of the majority of sands lies in submature category though few textural inversions are also remarkable. Sands from upstream to downstream stretches of the main stem river show depositional processes by graded suspension in highly turbulent (saltation) current to fluvial tractive current, as confirmed from the C-M patterns. The compositional variation includes quartz, feldspar, rock fragments, mica, etc.
    [Show full text]
  • User Guide: Soil Parent Material 1 Kilometre Dataset
    CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive User Guide: Soil Parent Material 1 kilometre dataset. Environmental Modelling Internal Report OR/14/025 BRITISH GEOLOGICAL SURVEY ENVIRONMENTAL Modelling INTERNAL REPORT OR/14/025 User Guide: Soil Parent Material 1 kilometre dataset. The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2012. Ordnance Survey Licence R. Lawley. No. 100021290. Keywords Contributor/editor Parent Material, Soil,UKSO. B. Rawlins. National Grid Reference SW corner 999999,999999 Centre point 999999,999999 NE corner 999999,999999 Map Sheet 999, 1:99 000 scale, Map name Front cover Soil Parent Material 1km dataset. Bibliographical reference LAWLEY., R. USER GUIDE: SOIL PARENT Material 1 Kilometre dataset. 2012. User Guide: Soil Parent Material 1km dataset.. British Geological Survey Internal Report, OR/14/025. 20pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, email [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2014. All rights reserved Keyworth, Nottingham British Geological Survey 2012 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Self-Guiding Geology Tour of Stanley Park
    Page 1 of 30 Self-guiding geology tour of Stanley Park Points of geological interest along the sea-wall between Ferguson Point & Prospect Point, Stanley Park, a distance of approximately 2km. (Terms in bold are defined in the glossary) David L. Cook P.Eng; FGAC. Introduction:- Geomorphologically Stanley Park is a type of hill called a cuesta (Figure 1), one of many in the Fraser Valley which would have formed islands when the sea level was higher e.g. 7000 years ago. The surfaces of the cuestas in the Fraser valley slope up to the north 10° to 15° but approximately 40 Mya (which is the convention for “million years ago” not to be confused with Ma which is the convention for “million years”) were part of a flat, eroded peneplain now raised on its north side because of uplift of the Coast Range due to plate tectonics (Eisbacher 1977) (Figure 2). Cuestas form because they have some feature which resists erosion such as a bastion of resistant rock (e.g. volcanic rock in the case of Stanley Park, Sentinel Hill, Little Mountain at Queen Elizabeth Park, Silverdale Hill and Grant Hill or a bed of conglomerate such as Burnaby Mountain). Figure 1: Stanley Park showing its cuesta form with Burnaby Mountain, also a cuesta, in the background. Page 2 of 30 Figure 2: About 40 million years ago the Coast Mountains began to rise from a flat plain (peneplain). The peneplain is now elevated, although somewhat eroded, to about 900 metres above sea level. The average annual rate of uplift over the 40 million years has therefore been approximately 0.02 mm.
    [Show full text]
  • Economic Geology Report ER79-4: Porphyritic Intrusions and Related
    MANITOBA CANADA DEPARTMENT OF ENERGY AND MINES MANITOBA MINERAL RESOURCES DIVISION ECONOMIC GEOLOGY REPORT ER79-4 PORPHYRITIC INTRUSIONS AND RELATED MINERALIZATION IN THE FLIN FLON VOLCANIC BELT by D.A. BALDWIN 1980 Funding for this project was provided under the cost-shared Canada-Manitoba Non-renewable Resources Evaluation Program by the Canada Department of Energy, Mines and Resources and the Manitoba Department of Mines, Resources and Environmental Management. MANITOBA DEPARTMENT OF ENERGY AND MINES HON. DONALD W. CRAIK PAUL E. JARVIS Minister Deputy Minister MINERAL RESOURCES DIVISION IAN HAUGH Executive Director ECONOMIC GEOLOGY REPORT ER79-4 PORPHYRITIC INTRUSIONS AND RELATED MINERALIZATION IN THE FLIN FLON VOLCANIC BELT by D.A. BALDWIN 1980 LEGEND I Cliff Lake Stock 5 Elbow Lake Stock 2 Whitefish Lake Porphyry 6 Fourmile Island Intrusion 3 Alberts Lake Intrusion 7 Chisel Lake Intrusion 4 Nisto Lake Intrusion 8 Wekusko Lake Intrusion ,~ -./ - -, I \." ~herridon '" , ;. <,.... ,1 if 55°00' 55°00' c, t,:) ,J -3 , I"" . c;? '" 1[' . ::t} \'''If!? ~,/J~ /j' ., ~), F lin.~ i;\))F ' I,".!0l~' ,d ' ;)/", ' ~.;'. l ;' ~" ,r~n ;t j; (I:/,1 ,r Lake ' \\ ;\~ ' ~i'/ 'lUi':;- -'i' //{ ,'/ , ,\" ,,/,1,1 pI , .h .(,1;' '\:. (IiI' ' .. '~'4_hl i / 'Y{j,'{:" 5 2.5 a 10 15 KILOMETRES J!) "'.t3 f3,F-"\ ---- :i~ f)J~c~. V 99°30' ">/)AfhapaplJskoj¥ !ZJ Porphyritic Intrusive Rocks 54°30' ! ,1 Lake .; ... 100°30' D Felsic Volcanic Rocks FIGURE 1: Distribution of porphyritic intrusive and felsic volcanic rocks in the Flin Flon volcanic belt, TABLE OF
    [Show full text]
  • Non-Clastic Sedimentary Rocks by Cindy Grigg
    Non-Clastic Sedimentary Rocks By Cindy Grigg 1 Rocks can be put into three main groups. They are grouped by how the rocks formed. Sedimentary (sed-uh-MEN-tuh-ree) rocks are formed on or near Earth's surface. Sedimentary rocks are sorted into other groups. They can be sorted as clastic or non-clastic. This group tells something about the rocks' beginning and what they formed from. 2 Non-clastic rocks are created when water evaporates or from the remains of plants and animals. Limestone is a non-clastic sedimentary rock. Limestone is made of the mineral calcite. It often contains fossils. Limestone formed in the ocean from the shells and skeletons of dead sea creatures. Some of the fossils in limestone are too small to be seen without a microscope. Chalk is a type of limestone that is usually white. It consists almost entirely of the shells of tiny dead sea creatures. Limestone is a common building material. 3 Coal is another non-clastic rock. It formed from the dead remains of plants. Millions of years ago, plants fell into swamps. They were covered with layers of sediment and did not rot. Over millions of years, as the remains were buried deeper under more and more layers of sediment, they were changed by pressure into coal. Coal is commonly used as fuel in power plants to make electricity. 4 Evaporite rocks formed when minerals such as gypsum and halite (rock salt) were left behind as water evaporated from oceans and lakes. Evaporite is common in desert areas, where evaporation is high, such as the Great Salt Lake in Utah.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on July 5, 2010 Geological Society of America Bulletin Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya An Yin, C.S. Dubey, T.K. Kelty, A.A.G. Webb, T.M. Harrison, C.Y. Chou and Julien Célérier Geological Society of America Bulletin 2010;122;360-395 doi: 10.1130/B26461.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.
    [Show full text]
  • 4 the Drill Core 13
    P-06-03 Oskarshamn site investigation Fracture mineralogy Results from drill core KSH03A+B Henrik Drake Department of Geology, Earth Sciences Centre Göteborg University Eva-Lena Tullborg, Terralogica AB January 2006 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 ISSN 1651-4416 SKB P-06-03 Oskarshamn site investigation Fracture mineralogy Results from drill core KSH03A+B Henrik Drake Department of Geology, Earth Sciences Centre Göteborg University Eva-Lena Tullborg, Terralogica AB January 2006 Keywords: Fracture minerals, Simpevarp, formation temperatures, ductile/brittle deformation, relative dating, wall rock alteration, red-ox, low-temperature minerals, calcite, stable isotopes, sandstone, adularia, hematite, clay minerals, XRD, SEM- EDS. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se Abstract The Swedish Nuclear Fuel and Waste Management Company (SKB) is currently carry- ing out site investigations in the Simpevarp/Laxemar area in the Oskarshamn region, in order to find a suitable location for long-time disposal of spent nuclear fuel. The drill core KSH03A+B from Simpevarp peninsula has been samples for detailed studies of fracture mineralogy. The sampling of fracture fillings was focused to a major deformation zone, striking NNE-SSW, although samples were also collected from above and below this zone.
    [Show full text]
  • A Brief History of Till Research and Developing Nomenclature
    k 7 2 A Brief History of Till Research and Developing Nomenclature With relief one remembers that, after all, the facts gathered with such infinite care, over so many years, are in no ways affected: their permanency is untouched, their value as high as ever. It is the interpretation which has gone astray. Carruthers (1953, p. 36) A benchmark publication in the development of till nomenclature was contained in the final report by the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits, entitled ‘Genetic Classification of Glacigenic Deposits’ (Goldthwait and Matsch, 1989; Figure 2.1). Most significant in this report was the paper by Aleksis Dreimanis (Figure 2.2), entitled ‘Tills: Their Genetic Terminology k k and Classification’, a summary of the findings of the Till Work Group, which operated over the period 1974–1986. It was a synthesis of knowledge and a rationale for a unified process-based nomenclature but at the same time afforded the presentation of alternative standpoints on till classification, and hence delivered a selection of frameworks containing complex and overlapping genetic terms. More broadly, ‘till’ at this juncture was defined as: a sediment that has been transported and is subsequently deposited by or from glacier ice, with little or no sorting by water. (Dreimanis and Lundqvist, 1984, p. 9) As a way forward, the Till Work Group, through Dreimanis (1989), arrived at a series of nomencla- ture diagrams (Figure 2.3), which aimed at an inclusive but at the same time simplified and unambigu- ous, process-based till classification scheme. More specifically, Dreimanis (1989), within the same volume, compiled a table of diagnostic characteristics for differentiating what he termed ‘lodgement till’, ‘melt-out till’ and ‘gravity flowtill’.
    [Show full text]
  • Detrital Zircon U–Pb Geochronology Of
    Precambrian Research 154 (2007) 88–106 Detrital zircon U–Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): Age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian–Nubian Shield D. Avigad a,∗, R.J. Stern b,M.Beythc, N. Miller b, M.O. McWilliams d a Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel b Geosciences Department, University of Texas at Dallas, Richardson, TX 75083-0688, USA c Geological Survey of Israel, 30 Malkhe Yisrael Street, Jerusalem 95501, Israel d Department of Geological and Environmental Sciences, Stanford University, CA 94305-2115, USA Received 1 May 2006; received in revised form 11 December 2006; accepted 14 December 2006 Abstract Detrital zircon geochronology of Neoproterozoic diamictites and Ordovician siliciclastics in northern Ethiopia reveals that the southern Arabian–Nubian Shield (ANS) formed in two major episodes. The earlier episode at 0.9–0.74 Ga represents island arc volcanism, whereas the later phase culminated at 0.62 Ga and comprised late to post orogenic granitoids related to crustal differ- entiation associated with thickening and orogeny accompanying Gondwana fusion. These magmatic episodes were separated by about ∼100 my of reduced igneous activity (a magmatic lull is detected at about 0.69 Ga), during which subsidence and deposition of marine carbonates and mudrocks displaying Snowball-type C-isotope excursions (Tambien Group) occurred. Cryogenian diamictite interpreted as glacigenic (Negash synclinoria, Tigrai) and polymict conglomerates and arkose of possible peri-glacial origin (Shiraro area, west Tigrai), deformed and metamorphosed within the Neoproterozoic orogenic edifice, occur at the top of the Tambien Group.
    [Show full text]
  • Style, Scale and Significance of Sand Bodies in the Northern and Central Belts, Southwest Southern Uplands
    Journal ofthe Geological Society, London, Vol. 144, 1987, pp. 787-805, 13 figs, 3 tables, Printed in Northern Ireland Style, scale and significance of sand bodies in the Northern and Central Belts, southwest Southern Uplands G.KELLINGl, P. DAVIES' & J. HOLROYD2 1 Geology Department, University of Keele, Staffs. ST5 5BG, UK 21 Blythe Road, Forsbrook, Blythe Bridge, Staffs., UK Abstract: Sedimentological and biostratigraphical data fromthe Rhinns of Galloway andadjacent areas in SW Scotland confirm that deep-water depositional systems consistently operated along, and were sourced from, the northwestern margin of an asymmetrical basin during the late Ordovician and earlySilurian, while pelagic facies accumulated simultaneously tothe SE, providing ascenario analogous to many modern trench systems. Most of the observedsedimentological anomalies, with regard to thisgeneral model, can be explained within the context of the varied styles of trench-filling depositional systems, briefly reviewed here, and the major stratigraphic and sedimentologic features can be best explained in terms of a geotectonically evolving fore-arcregion. Two main phases of development are recognized: (a) Llandeilo-late Ashgill: during this time interval the fore-arc trench region was tectonically juxtaposed against an active continental margin arc. Small- to medium-scale, SE-prograding sand-rich fans were formed within a relatively narrow trench, leading to axial diversion of the fans, initially to NE but later mainly to SW. Simultaneously a coarse volcanilithic sediment apron, flanking the arc, migrated gradually northeastwards, probably in response to relative fault displacement of the arc and trench; (b) Llandovery: during this time interval the fore-arc trench region was dominated by a variety of mainly fan-typedepositional systems which were exclusively sourced(at least until theuppermost Llandovery) from the northwestern margin.
    [Show full text]