Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrology, Diagenesis, and Genetic Stratigraphy of the Eocene Baca Formation, Alamo Navajo Reservation and Vicinity, Socorro County, New Mexico
OPEN FILE REPORT 125 PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHY OF THE EOCENE BACA FORMATION, ALAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO APPROVED : PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHYOF THE EOCENE BACA FORMATION, ALAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO by STEVEN MARTIN CATHER,B.S. THESIS Presented to the Facultyof the Graduate School of The Universityof Texas at Austin in Partial Fulfillment of the Requirements for the Degreeof MASTER OF ARTS THE UNIVERSITYOF TEXAS AT AUSTIN August 1980 ACKNOWLEDGMENTS I wish to sincerelythank Drs. R. L. Folkand C. E. Chapin fortheir enthusiasmtoward this study and theirpatience in tutoring a novicegeologist in their respectivefields of expertise. Dr. A. J. Scott provided many helpful comments concerning lacustrinesedimentation and thesisillustrations. Discussions with BruceJohnson contributedgreatly to my understanding of thedistribution of facies and paleoenvironments within the Baca-Eagar basin. I would also like to thank my colleaguesin Austin and e Socorrofor their helpful comments and criticisms. Bob Blodgettserved as studenteditor. Finally, I would like to acknowledge JerryGarcia, who providedunending inspiration and motivation throughout the course of this study. Financialsupport for field work and the writing of this manuscript wa-s generously provided by the New Mexico Bureau of Mines andMineral Resources. The University of TexasGeology Foundationalso provided funds for travel expenses and field work. This thesis was submitted tothe committee in June, 1980. iii PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHY OF THE EOCENE BACA FORMATION, AIAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO by Steven M. Cather ABSTRACT The Eocene Baca Formation of New Mexico and. correlative EagarFormation and Mogollon Rim gravels of Arizonacomprise a redbedsequence conglomerate,of sandstone, mudstone,and claystone which cropsout from near Socorro, New Mexico, to the Mogollon Rim of Arizona. -
Self-Guiding Geology Tour of Stanley Park
Page 1 of 30 Self-guiding geology tour of Stanley Park Points of geological interest along the sea-wall between Ferguson Point & Prospect Point, Stanley Park, a distance of approximately 2km. (Terms in bold are defined in the glossary) David L. Cook P.Eng; FGAC. Introduction:- Geomorphologically Stanley Park is a type of hill called a cuesta (Figure 1), one of many in the Fraser Valley which would have formed islands when the sea level was higher e.g. 7000 years ago. The surfaces of the cuestas in the Fraser valley slope up to the north 10° to 15° but approximately 40 Mya (which is the convention for “million years ago” not to be confused with Ma which is the convention for “million years”) were part of a flat, eroded peneplain now raised on its north side because of uplift of the Coast Range due to plate tectonics (Eisbacher 1977) (Figure 2). Cuestas form because they have some feature which resists erosion such as a bastion of resistant rock (e.g. volcanic rock in the case of Stanley Park, Sentinel Hill, Little Mountain at Queen Elizabeth Park, Silverdale Hill and Grant Hill or a bed of conglomerate such as Burnaby Mountain). Figure 1: Stanley Park showing its cuesta form with Burnaby Mountain, also a cuesta, in the background. Page 2 of 30 Figure 2: About 40 million years ago the Coast Mountains began to rise from a flat plain (peneplain). The peneplain is now elevated, although somewhat eroded, to about 900 metres above sea level. The average annual rate of uplift over the 40 million years has therefore been approximately 0.02 mm. -
Non-Clastic Sedimentary Rocks by Cindy Grigg
Non-Clastic Sedimentary Rocks By Cindy Grigg 1 Rocks can be put into three main groups. They are grouped by how the rocks formed. Sedimentary (sed-uh-MEN-tuh-ree) rocks are formed on or near Earth's surface. Sedimentary rocks are sorted into other groups. They can be sorted as clastic or non-clastic. This group tells something about the rocks' beginning and what they formed from. 2 Non-clastic rocks are created when water evaporates or from the remains of plants and animals. Limestone is a non-clastic sedimentary rock. Limestone is made of the mineral calcite. It often contains fossils. Limestone formed in the ocean from the shells and skeletons of dead sea creatures. Some of the fossils in limestone are too small to be seen without a microscope. Chalk is a type of limestone that is usually white. It consists almost entirely of the shells of tiny dead sea creatures. Limestone is a common building material. 3 Coal is another non-clastic rock. It formed from the dead remains of plants. Millions of years ago, plants fell into swamps. They were covered with layers of sediment and did not rot. Over millions of years, as the remains were buried deeper under more and more layers of sediment, they were changed by pressure into coal. Coal is commonly used as fuel in power plants to make electricity. 4 Evaporite rocks formed when minerals such as gypsum and halite (rock salt) were left behind as water evaporated from oceans and lakes. Evaporite is common in desert areas, where evaporation is high, such as the Great Salt Lake in Utah. -
Sediment Diagenesis
Sediment Diagenesis http://eps.mcgill.ca/~courses/c542/ SSdiedimen t Diagenes is Diagenesis refers to the sum of all the processes that bring about changes (e.g ., composition and texture) in a sediment or sedimentary rock subsequent to deposition in water. The processes may be physical, chemical, and/or biological in nature and may occur at any time subsequent to the arrival of a particle at the sediment‐water interface. The range of physical and chemical conditions included in diagenesis is 0 to 200oC, 1 to 2000 bars and water salinities from fresh water to concentrated brines. In fact, the range of diagenetic environments is potentially large and diagenesis can occur in any depositional or post‐depositional setting in which a sediment or rock may be placed by sedimentary or tectonic processes. This includes deep burial processes but excldludes more extensive hig h temperature or pressure metamorphic processes. Early diagenesis refers to changes occurring during burial up to a few hundred meters where elevated temperatures are not encountered (< 140oC) and where uplift above sea level does not occur, so that pore spaces of the sediment are continually filled with water. EElarly Diagenesi s 1. Physical effects: compaction. 2. Biological/physical/chemical influence of burrowing organisms: bioturbation and bioirrigation. 3. Formation of new minerals and modification of pre‐existing minerals. 4. Complete or partial dissolution of minerals. 5. Post‐depositional mobilization and migration of elements. 6. BtilBacterial ddtidegradation of organic matter. Physical effects and compaction (resulting from burial and overburden in the sediment column, most significant in fine-grained sediments – shale) Porosity = φ = volume of pore water/volume of total sediment EElarly Diagenesi s 1. -
The Science Behind Volcanoes
The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. -
National Evaporite Karst--Some Western Examples
122 National Evaporite Karst--Some Western Examples By Jack B. Epstein U.S. Geological Survey, National Center, MS 926A, Reston, VA 20192 ABSTRACT Evaporite deposits, such as gypsum, anhydrite, and rock salt, underlie about one-third of the United States, but are not necessarily exposed at the surface. In the humid eastern United States, evaporites exposed at the surface are rapidly removed by solution. However, in the semi-arid and arid western part of the United States, karstic features, including sinkholes, springs, joint enlargement, intrastratal collapse breccia, breccia pipes, and caves, locally are abundant in evaporites. Gypsum and anhydrite are much more soluble than carbonate rocks, especially where they are associated with dolomite undergoing dedolomitization, a process which results in ground water that is continuously undersaturated with respect to gypsum. Dissolution of the host evaporites cause collapse in overlying non-soluble rocks, including intrastratal collapse breccia, breccia pipes, and sinkholes. The differences between karst in carbonate and evaporite rocks in the humid eastern United States and the semi-arid to arid western United States are delimited approximately by a zone of mean annual precipitation of 32 inches. Each of these two rock groups behaves differently in the humid eastern United States and the semi-arid to arid west. Low ground-water tables and decreased ground water circulation in the west retards carbonate dissolution and development of karst. In contrast, dissolution of sulphate rocks is more active under semi-arid to arid conditions. The generally thicker soils in humid cli- mates provide the carbonic acid necessary for carbonate dissolution. Gypsum and anhydrite, in contrast, are soluble in pure water lacking organic acids. -
Map: Basement-Cover Relationships
Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 • BASEMENT-COVER RELATIONSHIPS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 BASEMENT-COVER RELATIONSHIPS FLINN ET AL~g~ JOHNSTONE ET AL RATHBONE ~ HARRIS~'~ RAMSAY & STURT SANDERSi I & VAN BREEMEN BREWER ET AL" 0 km 100 I I WATSON & DUNNING- GENERAL REVIEW KENNAN ET AL-- PARATECTONIC IRELAND BAMFORD-- SEISMIC CONSTRAINTS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The Caledonides of the British Isles--reviewed. 1979. Geological Society of London. Basement-cover relations in the British Caledonides Janet Watson & F. W. Dunning CONTENTS 1. Introduction 67 2. The Metamorphic Caledonides 68 a The Lewisian complex and related rocks 68 b Pre-Caledonian cover units 70 c Other possible basement units 72 d The Caledonian orogenic front 73 e Grenville activity in the northern Caledonian province 74 3. The Non-metamorphic Caledonides 76 a Basic facts relating to the belt in general 76 b The Midland Valley Transition Zone 77 c The Southern Uplands-Longford-Down-Clare Inliers Belt 83 d The Iapetus Suture 84 e The Lake District-Isle of Man-Leinster Belt 84 f The Irish Sea Horst 85 g The Welsh Basin and its eastern borders 85 h Eastern England 86 j The Midland Craton 86 4. Conclusions 87 5. Acknowledgements 88 6. References 88 1. Introduction underlying the Metamorphic Caledonides (which Although the conventional regional subdivi- consists mainly of gneisses) and that underlying sion of the British and Irish -
Contourites and Associated Sediments Controlled by Deep-Water Circulation Processes: State-Of-The-Art and Future Considerations
2nd Deep-Water Circulation Congress, 10-12 Sept. 2014, Ghent, Belgium Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations Michele Rebesco1, Francisco Javier Hernández-Molina2, David Van Rooij3 and Anna Wåhlin4 1 OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42 /C, 34010, TS, Italy; ([email protected]) 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; ([email protected]) 3 Department of Geology and Soil Science, Ghent University, B-9000 Gent, Belgium; ([email protected]) 4 Department of Earth Sciences, University of Gothenburg, PO Box 460, SE-405 30 Göteborg, Sweden; ([email protected]) Abstract: The contourite paradigm was conceived a few decades ago and about 120 major contourite areas are presently known associated to myriad oceanographic processes, which involve dense bottom currents, tides, eddies, deep-sea storms, internal waves and tsunamis. The increasing recognition of these deposits is influencing palaeoclimatology & palaeoceanography, slope-stability/geological hazard assessment, and hydrocarbon exploration. Nevertheless, there is a pressing need for a better understanding of the sedimentological and oceanographic processes governing contourites. Persistent oceanographic processes significantly affect the seafloor, resulting in a continuous spectrum of depositional and erosional features. Although much progress has been made in the large-scale, geophysically based recognition of these deposits, there remains a lack of unambiguous and commonly accepted diagnostic criteria for deciphering the small-scaled contourite facies and for distinguishing them from turbidite ones. Similarly, the study of sandy deposits generated or affected by bottom currents offers great research potential: these deposits might prove invaluable as future reservoir targets. -
Basement Characteristic Western Part of Java, Indonesia
Vol.8 (2018) No. 5 ISSN: 2088-5334 Basement Characteristic Western Part of Java, Indonesia; Case Study in Bayah Area, Banten Province Aton Patonah# , Haryadi Permana* #Faculty of Geological Engineering, Padjadjaran University, Sumedang KM 21. Jatinangor, 45363, West Java, Indonesia E-mail: [email protected] *Research Center for Geotechnology LIPI, Jl Sangkuriang Bandung 40135, West Java, Indonesia E-mail: [email protected] Abstract — Recent study reveals that in Bayah Complex, 20 km west of Ciletuh Melange Complex, discovered a metamorphic rock that interpreted as the basement of Java. This research aims to know the characteristic of metamorphic in Bayah areas. The result shows that the metamorphic rocks of Bayah Geological Complex are dominated by mica schist group, i.e., muscovite schist, muscovite-biotite schist, garnet biotite schist and chlorite schist associated with Pelitic - Psammitic protolith. The amphibolite, epidote amphibolite and actinolite schist found were metamorphosed of mafic rock protolith. All of them have been deformed and altered. Based on mineral assemblage, mica schist group included lower greenschist - epidote-amphibolite facies, whereas actinolite schist, epidote amphibolite schist, and hornblende schist included greenschist facies, epidote-amphibolite facies, and amphibolite facies respectively. Based on the data, these metamorphic rocks are associated with the orogenic style. The metamorphic rocks exposed to the surface through a complex process since Late Cretaceous. Metamorphic rocks have been deformed, folded and faulted since its formation. Its possible this rock was uplifted to the surface due to the intrusion of Cihara Granodiorite. Keywords — Bayah Geological Complex; greenschist facies; amphibolite facies; orogenic style; uplifted. [12]. According to [11], metamorphic rocks that exposed in I. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Sediment Diagenesis and Characteristics of Grains and Pore Geometry in Sandstone Reservoir Rocks from a Well of the North German Basin
Sediment Diagenesis and Characteristics of Grains and Pore Geometry in Sandstone Reservoir Rocks from a Well of the North German Basin Dissertation der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Kim Phuong Lieu München, 17.09.2013 Gutachter: 1. Prof. Dr. Wolfgang W. Schmahl Ludwig Maximilians University of Munich, Crystallography Section, Germany 2. Prof. Dr. Wladyslaw Altermann University of Pretoria, Department of Geology, South Africa Disputation: 15.01.2014 Acknowledgments ACKNOWLEDGEMENTS I would like to express my sincere gratitude to the Vietnamese Government, Vietnam Petroleum Institute for financial support of my doctoral study at the Ludwig-Maximilians University in Munich, Germany. The financial support by the German Federal Ministry of Education and Research (BMBF) for the NanoPorO (Nanostruktur und Benetzungseigenschaften von Sedimentkorn- und Porenraumoberflächen / eng.: Nanomorphology and Wetting Properties of Sediment Grain and Porespace Surfaces) project in which I have performed most of the present research is also acknowledged. Furthermore, I would like to thank RWE Dea AG, the industrial partner in the NanoPorO project, for providing the samples and for the contribution of important petrophysical data. Moreover, I am particularly grateful to my supervisors, Prof. Dr. Wladyslaw Altermann and Dr. Michaela Frei who not only gave me the freedom to follow my ideas, but also gave me guidance and support concerning academic issues and always encouraged me. I very much appreciate their expertise and their helpful suggestions and discussions, which were extremely valuable. Thanks also for the free and friendly environment that really motivated me in my every day studies. Thank you very much for your support. -
Pan-African Orogeny 1
Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).