Carbamate Pesticides Aldicarb Aldicarb Sulfoxide Aldicarb Sulfone

Total Page:16

File Type:pdf, Size:1020Kb

Carbamate Pesticides Aldicarb Aldicarb Sulfoxide Aldicarb Sulfone Connecticut General Statutes Sec 19a-29a requires the Commissioner of Public Health to annually publish a list setting forth all analytes and matrices for which certification for testing is required. Connecticut ELCP Drinking Water Analytes Revised 05/31/2018 Microbiology Total Coliforms Fecal Coliforms/ E. Coli Carbamate Pesticides Legionella Aldicarb Cryptosporidium Aldicarb Sulfoxide Giardia Aldicarb Sulfone Carbaryl Physicals Carbofuran Turbidity 3-Hydroxycarbofuran pH Methomyl Conductivity Oxamyl (Vydate) Minerals Chlorinated Herbicides Alkalinity, as CaCO3 2,4-D Bromide Dalapon Chloride Dicamba Chlorine, free residual Dinoseb Chlorine, total residual Endothall Fluoride Picloram Hardness, Calcium as Pentachlorophenol CaCO3 Hardness, Total as CaCO3 Silica Chlorinated Pesticides/PCB's Sulfate Aldrin Chlordane (Technical) Nutrients Dieldrin Endrin Ammonia Heptachlor Nitrate Heptachlor Epoxide Nitrite Lindane (gamma-BHC) o-Phosphate Metolachlor Total Phosphorus Methoxychlor PCB's (individual aroclors) Note 1 PCB's (as decachlorobiphenyl) Note 1 Demands Toxaphene TOC Nitrogen-Phosphorus Compounds Alachlor Metals Atrazine Aluminum Butachlor Antimony Diquat Arsenic Glyphosate Barium Metribuzin Beryllium Paraquat Boron Propachlor Cadmium Simazine Calcium Chromium Copper SVOC's Iron Benzo(a)pyrene Lead bis-(2-ethylhexyl)phthalate Magnesium bis-(ethylhexyl)adipate Manganese Hexachlorobenzene Mercury Hexachlorocyclopentadiene Molybdenum Nickel Potassium Miscellaneous Organics Selenium Dibromochloropropane (DBCP) Silver Ethylene Dibromide (EDB) Sodium 2,3,7,8-TCDD (Dioxin) Surfactants (MBAS) Strontium Thallium 1,4-Dioxane Tin Titanium Vanadium Zinc 1 Connecticut ELCP Drinking Water Analytes Revised 05/31/2018 Inorganic Disinfection Byproducts Bromate Miscellaneous Inorganics Chlorate Asbestos Total Dissolved Solids Chlorite Cyanide Perchlorate VOC's VOC's (continued) Benzene 1,3-Dichloropropane Bromobenzene 2,2-Dichloropropane Bromochloromethane 1,1-Dichloropropene Bromodichloromethane Bromoform 1,3-Dichloropropene Bromomethane Ethylbenzene n-Butylbenzene Hexachlorobutadiene sec-Butylbenzene Isopropylbenzene tert-Butylbenzene p-Isopropyltoluene Carbon Tetrachloride Methylene Chloride (Dichloromethane) Chlorobenzene Methyl-tert-butylether Chlorodibromomethane Naphthalene Chloroethane n-Propylbenzene Chloroform Styrene Chloromethane 1,1,1,2-Tetrachloroethane o-Chlorotoluene 1,1,2,2-Tetrachloroethane p-Chlorotoluene Tetrachloroethene Dibromomethane Toluene 1,2-Dichlorobenzene Total Trihalomethanes 1,3-Dichlorobenzene 1,2,3-Trichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Dichlorodifluoromethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Trichloroethene 1,1-Dichlorothene Trichlorofluoromethane cis-1,2-Dichloroethene 1,2,3-Trichloropropane trans-1,2-Dichloroethene 1,2,4-Trimethylbenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes, total RADIOCHEMISTRY Gross Alpha ORGANIC DISINFECTION BYPRODUCTS Gross Beta Bromochloroacetic Acid Cesium (134 and 137) Dibromoacetic Acid Cobalt-60 Dichloroacetic Acid Iodine-131 Monobromoacetic Acid Radium (226 and 228) Monochloroacetic Acid Strontium (89 and 90) Trichloroacetic Acid Tritium Uranium (Natural) Note 1: PCB's for drinking water may be initially determined as individual aroclors. If any aroclor is detected, the sample must reanalyzed by Method 508A, and the PCB's reported as decachlorobiphenyl. If laboratories are determining PCB's as aroclors, they must still analyze a PT sample and report as aroclors. 2.
Recommended publications
  • 12.18 Carbofuran Carbofuran (CAS No
    12. CHEMICAL FACT SHEETS WHO (2003) Cadmium in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/80). 12.18 Carbofuran Carbofuran (CAS No. 1563-66-2) is used worldwide as a pesticide for many crops. Residues in treated crops are generally very low or not detectable. The physical and chemical properties of carbofuran and the few data on occurrence indicate that drink- ing-water from both groundwater and surface water sources is potentially the major route of exposure. Guideline value 0.007 mg/litre Occurrence Has been detected in surface water, groundwater and drinking-water, generally at levels of a few micrograms per litre or lower; highest concentration (30 mg/litre) measured in groundwater ADI 0.002 mg/kg of body weight based on a NOAEL of 0.22 mg/kg of body weight per day for acute (reversible) effects in dogs in a short-term (4- week) study conducted as an adjunct to a 13-week study in which inhibition of erythrocyte acetylcholinesterase activity was observed, and using an uncertainty factor of 100 Limit of detection 0.1 mg/litre by GC with a nitrogen–phosphorus detector; 0.9 mg/litre by reverse-phase HPLC with a fluorescence detector Treatment achievability 1 mg/litre should be achievable using GAC Guideline derivation • allocation to water 10% of ADI • weight 60-kg adult • consumption 2 litres/day Additional comments Use of a 4-week study was considered appropriate because the NOAEL is based on a reversible acute effect; the NOAEL will also be protective for chronic effects.
    [Show full text]
  • Ri Wkh% Lrorjlfdo (Iihfwv Ri 6Hohfwhg &Rqvwlwxhqwv
    Guidelines for Interpretation of the Biological Effects of Selected Constituents in Biota, Water, and Sediment November 1998 NIATIONAL RRIGATION WQATER UALITY P ROGRAM INFORMATION REPORT No. 3 United States Department of the Interior Bureau of Reclamation Fish and Wildlife Service Geological Survey Bureau of Indian Affairs 8QLWHG6WDWHV'HSDUWPHQWRI WKH,QWHULRU 1DWLRQDO,UULJDWLRQ:DWHU 4XDOLW\3URJUDP LQIRUPDWLRQUHSRUWQR *XLGHOLQHVIRU,QWHUSUHWDWLRQ RIWKH%LRORJLFDO(IIHFWVRI 6HOHFWHG&RQVWLWXHQWVLQ %LRWD:DWHUDQG6HGLPHQW 3DUWLFLSDWLQJ$JHQFLHV %XUHDXRI5HFODPDWLRQ 86)LVKDQG:LOGOLIH6HUYLFH 86*HRORJLFDO6XUYH\ %XUHDXRI,QGLDQ$IIDLUV 1RYHPEHU 81,7('67$7(6'(3$570(172)7+(,17(5,25 %58&(%$%%,776HFUHWDU\ $Q\XVHRIILUPWUDGHRUEUDQGQDPHVLQWKLVUHSRUWLVIRU LGHQWLILFDWLRQSXUSRVHVRQO\DQGGRHVQRWFRQVWLWXWHHQGRUVHPHQW E\WKH1DWLRQDO,UULJDWLRQ:DWHU4XDOLW\3URJUDP 7RUHTXHVWFRSLHVRIWKLVUHSRUWRUDGGLWLRQDOLQIRUPDWLRQFRQWDFW 0DQDJHU1,:43 ' %XUHDXRI5HFODPDWLRQ 32%R[ 'HQYHU&2 2UYLVLWWKH1,:43ZHEVLWHDW KWWSZZZXVEUJRYQLZTS Introduction The guidelines, criteria, and other information in The Limitations of This Volume this volume were originally compiled for use by personnel conducting studies for the It is important to note five limitations on the Department of the Interior's National Irrigation material presented here: Water Quality Program (NIWQP). The purpose of these studies is to identify and address (1) Out of the hundreds of substances known irrigation-induced water quality and to affect wetlands and water bodies, this contamination problems associated with any of volume focuses on only nine constituents or the Department's water projects in the Western properties commonly identified during States. When NIWQP scientists submit NIWQP studies in the Western United samples of water, soil, sediment, eggs, or animal States—salinity, DDT, and the trace tissue for chemical analysis, they face a elements arsenic, boron, copper, mercury, challenge in determining the sig-nificance of the molybdenum, selenium, and zinc.
    [Show full text]
  • Modifications on the Basic Skeletons of Vinblastine and Vincristine
    Molecules 2012, 17, 5893-5914; doi:10.3390/molecules17055893 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Modifications on the Basic Skeletons of Vinblastine and Vincristine Péter Keglevich, László Hazai, György Kalaus and Csaba Szántay * Department of Organic Chemistry and Technology, University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4, Hungary * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +36-1-463-1195; Fax: +36-1-463-3297. Received: 30 March 2012; in revised form: 9 May 2012 / Accepted: 10 May 2012 / Published: 18 May 2012 Abstract: The synthetic investigation of biologically active natural compounds serves two main purposes: (i) the total synthesis of alkaloids and their analogues; (ii) modification of the structures for producing more selective, more effective, or less toxic derivatives. In the chemistry of dimeric Vinca alkaloids enormous efforts have been directed towards synthesizing new derivatives of the antitumor agents vinblastine and vincristine so as to obtain novel compounds with improved therapeutic properties. Keywords: antitumor therapy; vinblastine; vincristine; derivatives 1. Introduction Vinblastine (1) and vincristine (2) are dimeric alkaloids (Figure 1) isolated from the Madagaskar periwinkle plant (Catharantus roseus), exhibit significant cytotoxic activity and are used in the antitumor therapy as antineoplastic agents. In the course of cell proliferation they act as inhibitors during the metaphase of the cell cycle and by binding to the microtubules inhibit the development of the mitotic spindle. In tumor cells these agents inhibit the DNA repair and the RNA synthesis mechanisms, blocking the DNA-dependent RNA polymerase. Molecules 2012, 17 5894 Figure 1.
    [Show full text]
  • CHEMICALS of PUBLIC HEALTH CONCERN and Their Management in the African Region
    H H C Hg H N C OH O O HO OH OH CHEMICALS OF PUBLIC HEALTH CONCERN and their management in the African Region REGIONAL ASSESSMENT REPORT 4 JULY 2014 AFRO LIBRARY CATALOGUING-IN-PUBLICATION DATA Chemicals of public health concern in the African Region and their management: Regional Assessment Report 1. Chemically-Induced Disorders – prevention & control 2. Environmental Exposure 3. Polluants environnemental – adverse effects – toxicity 4. Hazardous Substances 5. Risk Management 6. Health Impact Assessment I. World Health Organization. Regional Office for Africa II.Title ISBN: 978-929023281-0 (NLM Classification:QZ 59) © WHO REGIONAL OFFICE FOR AFRICA, 2014 Publications of the World Health Organization enjoy The mention of specific companies or of certain copyright protection in accordance with the provisions manufacturers’ products does not imply that they of Protocol 2 of the Universal Copyright Convention. are endorsed or recommended by the World Health All rights reserved. Copies of this publication may be Organization in preference to others of a similar nature obtained from the Library, WHO Regional Office for that are not mentioned. Errors and omissions excepted, Africa, P.O. Box 6, Brazzaville, Republic of Congo (Tel: the names of proprietary products are distinguished by +47 241 39100; +242 06 5081114; Fax: +47 241 initial capital letters. 39501; E-mail: [email protected]). Requests for permission to reproduce or translate this publication All reasonable precautions have been taken by the – whether for sale or for non-commercial distribution – World Health Organization to verify the information should be sent to the same address. contained in this publication.
    [Show full text]
  • Lindane Shampoo Reference Number: CP.PMN.09 Effective Date: 11.01.06 Last Review Date: 08.20 Line of Business: Medicaid Revision Log
    Clinical Policy: Lindane Shampoo Reference Number: CP.PMN.09 Effective Date: 11.01.06 Last Review Date: 08.20 Line of Business: Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Lindane is an ectoparasiticide and ovicide effective against Pediculus humanus capitis (head lice), Pthirus pubis (crab lice), and their ova. FDA Approved Indication(s) Lindane Shampoo is indicated for the treatment of head lice (infestations of Pediculus humanus capitis), crab lice (infestations of Pthirus pubis), and their ova only in patients who cannot tolerate other approved therapies, or have failed treatment with other approved therapies. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Lindane shampoo is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Head Lice (must meet all): 1. Diagnosis of Pediculus capitis (head lice); 2. Failure of two preferred agents indicated for head lice (see Appendix B for examples), at least one of which was used within the past 60 days, unless ALL preferred agents for head lice are contraindicated or clinically significant adverse effects are experienced; 3. Request does not exceed 1 bottle (60 mL) per treatment course. Approval duration: 14 days B. Crab Lice (must meet all): 1. Diagnosis of Phthirus pubis (crab lice); 2. Failure of pyrethrins/piperonyl butoxide AND permethrin 1% cream, used in last 60 days, unless both are contraindicated or clinically significant adverse effects are experienced; 3.
    [Show full text]
  • Pesticides May Reduce Lettuce Yield Frank V
    High-value crops such as strawberries, tain classes of insecticides on lettuce photo- usually clearly visible. Insecticides applied at broccoli, and iceberg lettuce often receive synthesis, transpiration, and productivity. normal rates and under the right environ- “preventive” or “insurance” pesticide treat- mental conditions may subtly damage a plant ments, which may result in weekly scheduled Insecticides but remain unobserved, because symptoms applications of insecticides. Many times such Insecticides in the various “classes,” such are not visible. treatments are unwarranted economically as chlorinated hydrocarbons (DDT, endrin, During the last few years, plant physiolo- and may reduce yields by detrimental effects and methoxychlor), organophosphates gists at University of California, Riverside, on the plants. Decreases in strawberry yields (guthion, parathion, and methyl-parathion), have developed the dual isotope porometer, due to preventive insecticide treatments in the carbamates (malathion and methomyl), and which provides accurate, simultaneous mea- absence of economically significant pest synthetic pyrethroids (fenvalerate and per- surements of a plant’s photosynthesis and populations have been reported. Research methrin), differ in their effects on plants. Ad- transpiration rates in the field. Entomologists supported by the California Iceberg Lettuce ditionally, the rates, number, and timing of have used the instrument to measure effects Research Advisory Board indicated that head applications may alter a compound’s effect
    [Show full text]
  • Lindane Lotion USP, 1% RX Only WARNINGS
    Lindane Lotion USP, 1% RX Only WARNINGS: Lindane Lotion should only be used in patients who cannot tolerate or have failed first-line treatment with safer medications for the treatment of scabies. (See INDICATIONS AND USAGE.) Neurologic Toxicity Seizures and deaths have been reported following Lindane Lotion use with repeat or prolonged application, but also in rare cases following a single application used according to directions. Lindane lotion should be used with caution for infants, children, the elderly, and individuals with other skin conditions (e.g, atopic dermatitis, psoriasis) and in those who weigh < 110 lbs (50 kg) as they may be at risk of serious neurotoxicity. Contraindications Lindane Lotion is contraindicated in premature infants and individuals with known uncontrolled seizure disorders. Proper Use Instruct patients on the proper use of Lindane Lotion, the amount to apply, how long to leave it on, and avoiding re-treatment. Inform patients that itching occurs after the successful killing of scabies and is not necessarily an indication for re-treatment with Lindane Lotion. (See DOSAGE AND ADMINISTRATION.) DESCRIPTION Lindane Lotion USP, 1%, is an ectoparasiticide and ovicide. In addition to the active ingredient, lindane, it contains glycerol monostearate, cetyl alcohol, stearic acid, trolamine, carrageenan, 2- amino-2-methyl-1-propanol, methylparaben, butylparaben, perfume and water to form a lotion. Lindane is the gamma isomer of 1,2,3,4,5,6-hexachlorocyclohexane having the following structural formula: C6H6Cl6 M.W. 290.83 CLINICAL PHARMACOLOGY Lindane Lotion USP, 1%, is an ectoparasiticide and ovicide effective against Sarcoptes scabiei (scabies). Lindane exerts its parasiticidal action by being directly absorbed into the parasites and 1 their ova.
    [Show full text]
  • Florida State Emergency Response Commission
    Florida State Emergency Response Commission Sub-Committee on Training (SOT) HAZARDOUS MATERIALS MEDICAL TREATMENT PROTOCOLS Version 3.3 TOXIDROMES Toxidromes are clinical syndromes that the patient presents with. These patterns of signs and symptoms are essential for the successful recognition of chemical exposure. The toxidromes identified in this protocol are chemical exposure based while others such as the opioids are found within general medical protocol. These chemical toxidromes are identified clinically into five syndromes: Irritant Gas Toxidrome Asphyxiant Toxidrome Corrosive Toxidrome Hydrocarbon and Halogenated Hydrocarbons Toxidrome Cholinergic Toxidrome Each can present as a clinical manifestation of the chemical/poisoning involved with some cross-over between toxidromes. This list combines the toxic syndromes found within NFPA 473 (A.5.4.1(2) and traditional syndromes. Toxidrome Correlation to NFPA Standard 473 and Traditional Syndromes Toxidrome NFPA 473 A.5.4.1(2) Hazardous Materials Protocol Correlation Irritant Gas (j) Irritants Bronchospasm OC Pepper spray & lacrimants Asphyxiant (c) Chemical asphyxiants Carbon Monoxide (d) Simple asphyxiants Aniline dyes, Nitriles, Nitrares (h) Blood Agents Cyanide & Hydrogen Sulfide (n) Nitrogen Compounds Closed Space Fires Simple Asphyxants Corrosive (a) Corrosives Hydrofluroic Acid (g) Vesicants Chemical burns to the eye Choramine and Chlorine Hydrocarbon (e) Organic solvents Phenol and (q) Phenolic Compounds Halogenated Hydrocarbons Halogenated Hydrocarbons Cholinergic (b) Pesticides
    [Show full text]
  • WO 2018/005077 Al O O© O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/005077 Al 04 January 2018 (04.01.2018) W ! P O PCT (51) International Patent Classification: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, A61K 31/78 (2006.01) C08J 7/04 (2006.01) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. C08G 59/77 (2006.01) (84) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of regional protection available): ARIPO (BW, GH, PCT/US20 17/037 176 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (22) International Filing Date: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 13 June 2017 (13.06.2017) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (25) Filing Language: English MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (26) Publication Language: English KM, ML, MR, NE, SN, TD, TG). (30) Priority Data: 62/356,918 30 June 2016 (30.06.2016) US Published: — with international search report (Art. 21(3)) (71) Applicant: ELEMENTIS SPECIALTIES, INC. [US/US]; 469 Old Trenton Road, East Windsor, NJ 085 12 (US). (72) Inventors: IJDO, Wouter; 1224 Bridle Estates Dri ve, Yardley, PA 19067 (US). CHEN, Yanhui; 4 Hal- stead Place, Princeton, NJ 08540 (US).
    [Show full text]
  • Organophosphate Poisoning : a Review
    120 Sinha and Sharma Med J Indones Organophosphate poisoning : A review Parmod K. Sinha, Ashok Sharma Abstrak Pestisida organofosfat digunakan secara luas di seluruh dunia. Keracunan oleh bahan ini merupakan masalah kesehatan masyarakat, terutama di negara berkembang. Zat neurotoksik organofosfat merupakan bahan yang dianggap mengancam dalam bidang militer dan terorisme. Mekanisme toksisitas bahan ini adalah dengan cara menghambat asetilkolinesterase yang mengakibatkan menumpuknya neurotransmitor asetilkolin dan terjadi rangsangan terus-menerus pada reseptor asetilkolin pada sistem saraf sentral maupun perifer. Selain krisis kolinergik, organofosfat dapat menimbulkan berbagai sindrom neurologis, baik akut maupun kronik. Sedangkan gejala peralihan ( intermediate) terjadi 1-4 hari setelah krisis kolinergik teratasi. Pengobatan standar terdiri dari reaktivasi asetilkolinesterase dengan antidot golongan oksim (prolidoksim, oksidoksime, HI-6 dan HLo7), dan pengendalian efek biokimia asetilkolin dengan menggunakan atropin. Golongan oksim yang baru HI-6 dan Hlo7 merupakan reaktivator asetilkolinesterase yang lebih cocok dan efektif untuk keracunan akut dan berat dibandingkan dengan prolidoksim dan obidoksim. Penderita yang mendapat pengobatan segera, biasanya dapat sembuh dari toksisitas akut, namun gejala neurologis ikutan dapat saja terjadi. (Med J Indones 2003; 12: 120-6) Abstract Organophosphate pesticides are used extensively worldwide, and poisoning by these agents, particularly in developing nations is a public health problem. Organophosphorous
    [Show full text]
  • P-Listed Hazardous Wastes
    P-Listed Hazardous Wastes The Environmental Protection Agency (EPA) has identified a number of chemicals on the EPA “P-list” that present an especially acute hazard when disposed of as hazardous waste. Because of their acute hazards, there are more stringent requirements when disposing of these wastes: ►Container size: When collecting p-listed chemicals as waste, the volume of the hazardous waste container must not exceed one quart (approximately one liter). ►Empty containers: Empty containers that held p-listed chemicals must also be disposed of as hazardous waste. They are not allowed to be washed or re-used. ►Contaminated materials: Disposable materials that become contaminated with p-listed chemicals (e.g. gloves, weighing boats, etc.) must also be disposed of as hazardous waste. Non-disposable materials must be “triple-rinsed”, or rinsed three times to remove the contamination. This rinsate must be collected as hazardous waste. Materials contaminated with p-listed chemicals may not be washed or re-used until they have been triple-rinsed. Remember: - Label the waste as hazardous waste. Most common p-listed wastes Just like all other hazardous wastes, p-listed Chemical CAS number wastes must be labeled with the words Acrolein 107–02–8 “hazardous waste”, the complete chemical Allyl alcohol 107–18–6 name, and the associated hazard Arsenic compounds Varies characteristics (e.g., ignitable, corrosive, Inorganic cyanide Varies toxic, or reactive). salts Carbon disulfide 75-15-0 - Use disposable materials whenever Cyanogen and 460-19-5, 506-77-4 possible. Triple-rising non-disposable Cyanogen Chloride material generates a lot of waste, which can 2,4-Dinitrophenol 51–28–5 be difficult to dispose of safely.
    [Show full text]
  • Rapid HPLC Determination of Carbofuran and Carbaryl in Tap and Environmental Waters Using On-Line SPE
    Application Update: 186 Rapid HPLC Determination of Carbofuran and Carbaryl in Tap and Environmental Waters Using On-Line SPE Xu Qun1 and Jeff Rohrer2 1Shanghai, Peoples Republic of China; 2Sunnyvale, CA, USA Introduction Method detection limits (MDLs) of the two Key Words N-methylcarbamates are widely used agricultural compounds were both ≤ 0.062 μg/L, which is lower than pesticides. Reversed-phase high-performance liquid the MDLs reported in EPA Method 8318 (2.0 μg/L for • Carbamates chromatography (RP-HPLC) with fluorescence detection carbofuran and 1.7 μg/L for carbaryl), and in the standard • U.S. EPA following postcolumn derivatization, per EPA Methods method enacted by the Chinese government (7 μg/L 531.2 and 8318,1,2 is the method typically used for the for carbofuran).5 The MDLs were also similar to those • Pesticides sensitive determination of carbamates. Thermo Scientific reported in EPA Method 531.2 (0.058 μg/L for carbofuran • Drinking Water has published a detailed method3,4 that is consistent with and 0.068 μg/L for carbaryl). The MDL for carbofuran is the EPA methods. When an HPLC with UV absorbance well under the 40 μg/L maximum allowable concentration • SolEx HRP detection method is used, a sample preparation in U.S. drinking water,6 and meets the general rule for • RSLC procedure—either liquid-liquid extraction or off-line pesticides in drinking water (98/83/EC) published by the solid-phase extraction (SPE)—is required to increase the European Union (the maximum admissible concentration detection sensitivity. However, these procedures are time- of each individual pesticide component is 0.1 μg/L).7 consuming, require large volumes of organic solvents, and Therefore this method would be universally appropriate are deficient in terms of process control.
    [Show full text]