Redalyc.Elusive Parnassius Mnemosyne (Linnaeus, 1758) Larvae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Butterflies and Moths of Ada County, Idaho, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Surveys for Dun Skipper (Euphyes Vestris) in the Harrison Lake Area, British Columbia, July 2009
Surveys for Dun Skipper (Euphyes vestris) in the Harrison Lake Area, British Columbia, July 2009 Report Citation: Parkinson, L., S.A. Blanchette, J. Heron. 2009. Surveys for Dun Skipper (Euphyes vestris) in the Harrison Lake Area, British Columbia, July 2009. B.C. Ministry of Environment, Ecosystems Branch, Wildlife Science Section, Vancouver, B.C. 51 pp. Cover illustration: Euphyes vestris, taken 2007, lower Fraser Valley, photo by Denis Knopp. Photographs may be used without permission for non-monetary and educational purposes, with credit to this report and photographer as the source. The cover photograph is credited to Denis Knopp. Contact Information for report: Jennifer Heron, Invertebrate Specialist, B.C. Ministry of Environment, Ecosystems Branch, Wildlife Science Section, 316 – 2202 Main Mall, Vancouver, B.C., Canada, V6T 1Z1. Phone: 604-222-6759. Email: [email protected] Acknowledgements Fieldwork was conducted by Laura Parkinson and Sophie-Anne Blanchette, B.C. Conservation Corps Invertebrate Species at Risk Crew. Jennifer Heron (B.C. Ministry of Environment) provided maps, planning and guidance for this project. The B.C. Invertebrate Species at Risk Inventory project was administered by the British Columbia Conservation Foundation (Joanne Neilson). Funding was provided by the B.C. Ministry of Environment through the B.C. Conservation Corp program (Ben Finkelstein, Manager and Bianka Sawicz, Program Coordinator), the B.C. Ministry of Environment Wildlife Science Section (Alec Dale, Manager) and Conservation Framework Funding (James Quayle, Manager). Joanne Neilson (B.C. Conservation Foundation) was a tremendous support to this project. This project links with concurrent invertebrate stewardship projects funded by the federal Habitat Stewardship Program for species at risk. -
Révision Taxinomique Et Nomenclaturale Des Rhopalocera Et Des Zygaenidae De France Métropolitaine
Direction de la Recherche, de l’Expertise et de la Valorisation Direction Déléguée au Développement Durable, à la Conservation de la Nature et à l’Expertise Service du Patrimoine Naturel Dupont P, Luquet G. Chr., Demerges D., Drouet E. Révision taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport SPN 2013 - 19 (Septembre 2013) Dupont (Pascal), Demerges (David), Drouet (Eric) et Luquet (Gérard Chr.). 2013. Révision systématique, taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport MMNHN-SPN 2013 - 19, 201 p. Résumé : Les études de phylogénie moléculaire sur les Lépidoptères Rhopalocères et Zygènes sont de plus en plus nombreuses ces dernières années modifiant la systématique et la taxinomie de ces deux groupes. Une mise à jour complète est réalisée dans ce travail. Un cadre décisionnel a été élaboré pour les niveaux spécifiques et infra-spécifique avec une approche intégrative de la taxinomie. Ce cadre intégre notamment un aspect biogéographique en tenant compte des zones-refuges potentielles pour les espèces au cours du dernier maximum glaciaire. Cette démarche permet d’avoir une approche homogène pour le classement des taxa aux niveaux spécifiques et infra-spécifiques. Les conséquences pour l’acquisition des données dans le cadre d’un inventaire national sont développées. Summary : Studies on molecular phylogenies of Butterflies and Burnets have been increasingly frequent in the recent years, changing the systematics and taxonomy of these two groups. A full update has been performed in this work. -
Monitoring Methodology and Protocols for 20 Habitats, 20 Species and 20 Birds
1 Finnish Environment Institute SYKE, Finland Monitoring methodology and protocols for 20 habitats, 20 species and 20 birds Twinning Project MK 13 IPA EN 02 17 Strengthening the capacities for effective implementation of the acquis in the field of nature protection Report D 3.1. - 1. 7.11.2019 Funded by the European Union The Ministry of Environment and Physical Planning, Department of Nature, Republic of North Macedonia Metsähallitus (Parks and Wildlife Finland), Finland The State Service for Protected Areas (SSPA), Lithuania 2 This project is funded by the European Union This document has been produced with the financial support of the European Union. Its contents are the sole responsibility of the Twinning Project MK 13 IPA EN 02 17 and and do not necessarily reflect the views of the European Union 3 Table of Contents 1. Introduction .......................................................................................................................................................... 6 Summary 6 Overview 8 Establishment of Natura 2000 network and the process of site selection .............................................................. 9 Preparation of reference lists for the species and habitats ..................................................................................... 9 Needs for data .......................................................................................................................................................... 9 Protocols for the monitoring of birds .................................................................................................................... -
Assessing Landscape Effects on Genetics and Dispersal of the Rocky Mountain Apollo Butterfly Arnassiusp Smintheus Using a Resistance Mapping Approach
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 10-27-2017 10:30 AM Assessing Landscape Effects on Genetics and Dispersal of the Rocky Mountain Apollo Butterfly arnassiusP smintheus using a Resistance Mapping Approach Ning Chen The University of Western Ontario Supervisor Dr. Nusha Keyghobadi The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Ning Chen 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biology Commons Recommended Citation Chen, Ning, "Assessing Landscape Effects on Genetics and Dispersal of the Rocky Mountain Apollo Butterfly Parnassius smintheus using a Resistance Mapping Approach" (2017). Electronic Thesis and Dissertation Repository. 5058. https://ir.lib.uwo.ca/etd/5058 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Landscape variables that best explain genetic differentiation may not also best explain dispersal patterns, but many studies use genetic differentiation as a proxy for dispersal. I tested the effects of landscape on both genetic differentiation and dispersal in parallel, to explore whether landscape effects on genetic differentiation between populations and landscape effects on dispersal would be comparable in such contexts. I used circuit theory (Circuitscape) and least cost transect analysis to evaluate the effects of landscape on both movement and genetic differentiation of the butterfly, Parnassius smintheus, in the Jumpingpound Ridge study system. -
Cerisy and Allancastria Cerisy Martini FRUHSTORFER
©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at _________ Atalanta (August 1997) 28 (1/2):43-47, Würzburg, ISSN 0171-0079 _________ A contribution to the knowledge of the Papilionidae of Rhodes Island (Lepidoptera: Papilionidae) by G iovanni Sa l a & M a u r iz io Bo llin o received 6.IV. 1996 Introduction In the present work the authors report considerations about distribution, ecology, and syste- matics of the Papilionidae of Rhodes Island, based on direct observations during a spring field-trip (10.-17.IV. 1994) and on works of many authors (Fruhstorfer , Rebel , Turati , Seyer , Weiss , Koçak, Olivier ). Following investigations done on Kriti Papilionidae, the first author visited all the known sites adding some new biotopes; the first intent was searching for the food plants, the preimaginal instars, the places of flight with the feeding plants of adults. The first author, with the cooper ation of three collegues, travelled the island for more than 880 km, visiting almost all localities cited by Olivier and trying to look for new biotopes in the southern part of Rhodes; the climatic situation was in syntony with the annual trend although a disturbance in the first days of April has delayed the emergence of populations of All. cerisy at higher altitudes in the center of the island, while those at sea level have already vanished; in the intermediate area the flight period was at its peak; generally the butterflies were scarce, only All. cerisy and Manióla telmessia were found in some numbers. We didn’t find any Archon apollinus despite the search along the whole of Rhodes; we presume that the flight period had already ended for quite a time because, at least, some worn specimens should have been found; if apollinus is present on Rhodes island, it is surely very local and rare. -
Spotting Butterflies Says Ulsh
New & Features “A butterfly’s lifespan generally cor- responds with the size of the butterfly,” Spotting Butterflies says Ulsh. The tiny blues often seen in the mountains generally only live about How, when and where to find Lepidoptera in 10 days. Some species, however, will the Cascades and Olympics overwinter in the egg, pupa or chrysalid form (in the cocoon prior to becoming winged adults). A few Northwest spe- cies overwinter as adults, and one—the mourning cloak—lives for ten months, and is the longest lived butterfly in North America. The first thing that butterflies do upon emerging from the chrysalis and unfold- ing their wings is to breed. In their search for mates, some butterflies “hilltop,” or stake out spots on high trees or ridgelines to make themselves more prominent. A butterfly’s wing colors serve two distinct purposes. The dorsal, or upperside of the wings, are colorful, and serve to attract mates. The ventral, or underside of the wings generally serves to camouflage the insects. So a butterfly such as the satyr comma has brilliant orange and yellow Western tiger and pale tiger swallowtail butterflies “puddling.” When looking for for spots when seen with wings open, and butterflies along the trail keep an eye on moist areas or meadows with flowers. a bark-like texture to confuse predators when its wings are closed. By Andrew Engelson Butterfly Association, about where, how As adults, butterflies also seek out Photos by Idie Ulsh and when to look for butterflies in our nectar and water. Butterflies generally mountains. Ulsh is an accomplished Butterflies are the teasers of wildlife. -
Large-Scale Movement Behavior in a Reintroduced Predator Population
doi: 10.1111/ecog.03030 41 126–139 ECOGRAPHY Research Large-scale movement behavior in a reintroduced predator population Frances E. Buderman, Mevin B. Hooten, Jacob S. Ivan and Tanya M. Shenk F. E. Buderman (http://orcid.org/0000-0001-9778-9906) ([email protected]) Dept of Fish, Wildlife, and Conservation Biology, Colorado State Univ., Fort Collins, CO, USA. – M. B. Hooten, U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Dept of Fish, Wildlife, and Conservation Biology and Statistics, Colorado State Univ., Fort Collins, CO, USA, and Graduate Degree Program in Ecology, Colorado State Univ., Fort Collins, CO, USA. – J. S. Ivan, Colorado Parks and Wildlife, Fort Collins, CO, USA. – T. M. Shenk, National Park Service, Great Plains Cooperative Ecosystem Studies Unit, Univ. of Nebraska, Lincoln, NE, USA. Ecography Understanding movement behavior and identifying areas of landscape connectivity is 41: 126–139, 2018 critical for the conservation of many species. However, collecting fine-scale movement doi: 10.1111/ecog.03030 data can be prohibitively time consuming and costly, especially for rare or endangered species, whereas existing data sets may provide the best available information on animal Subject Editor: Timothy Keitt. movement. Contemporary movement models may not be an option for modeling Editor-in-Chief: Miguel Araújo. existing data due to low temporal resolution and large or unusual error structures, but Accepted 17 July 2017 inference can still be obtained using a functional movement modeling approach. We use a functional movement model to perform a population-level analysis of telemetry data collected during the reintroduction of Canada lynx to Colorado. -
Introduction
BULGARIA Nick Greatorex-Davies. European Butterflies Group Contact ([email protected]) Local Contact Prof. Stoyan Beshkov. ([email protected]) National Museum of Natural History (NMNH), Sofia, Butterfly Conservation Europe Partner Bulgarian Academy of Sciences Stanislav Abadjiev compiled and collated butterfly records for the whole of Bulgaria and published a Local Recording Scheme distribution atlas in 2001 (see below). Records are still being gathered and can be sent to Stoyan Beshkov at NMNH, Sofia. Butterfly List See Butterflies of Bulgaria website (Details below) Introduction Bulgaria is situated in eastern Europe with its eastern border running along the Black Sea coast. It is separated from Romania for much of its northern border by the River Danube. It shares its western border with Serbia and Macedonia, and its southern border with Greece and Turkey. Bulgaria has a land area of almost 111,000 sq km (smaller than England but bigger than Scotland) and a declining human population of 7.15 million (as of 2015), 1.5 million of which live in the capital city, Sofia. It is very varied in both climate, topography and habitats. Substantial parts of the country are mountainous, particularly in the west, south-west and central ‘spine’ of the country and has the highest mountain in the Balkan Mountains (Musala peak in the Rila Mountains, 2925m) (Map 1). Almost 70% of the land area is above 200m and over 27% above 600m. About 40% of the country is forested and this is likely to increase through natural regeneration due to the abandonment of agricultural land. Following nearly 500 years under the rule of the Ottoman Empire, Bulgaria was independent for just a few years from 1908 before coming under the domination of the soviet communist regime in 1946. -
Anthropogenic Threats to High-Altitude Parnassian Diversity Fabien Condamine, Felix Sperling
Anthropogenic threats to high-altitude parnassian diversity Fabien Condamine, Felix Sperling To cite this version: Fabien Condamine, Felix Sperling. Anthropogenic threats to high-altitude parnassian diversity. News of The Lepidopterists’ Society, 2018, 60, pp.94-99. hal-02323624 HAL Id: hal-02323624 https://hal.archives-ouvertes.fr/hal-02323624 Submitted on 23 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. _______________________________________________________________________________________News of The Lepidopterists’ Society Volume 60, Number 2 Conservation Matters: Contributions from the Conservation Committee Anthropogenic threats to high-altitude parnassian diversity Fabien L. Condamine1 and Felix A.H. Sperling2 1CNRS, UMR 5554 Institut des Sciences de l’Evolution (Université de Montpellier), Place Eugène Bataillon, 34095 Montpellier, France [email protected], corresponding author 2Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada Introduction extents (Chen et al. 2011). However, this did not result in increases in range area because the area of land available Global mean annual temperatures increased by ~0.85° declines with increasing elevation. Accordingly, extinc- C between 1880 and 2012 and are likely to rise by an tion risk may increase long before species reach a summit, additional 1° C to 4° C by 2100 (Stocker et al. -
Whole Genome Shotgun Phylogenomics Resolves the Pattern
Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, Fabien Condamine To cite this version: Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, et al.. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Systematic Biology, Oxford University Press (OUP), 2020, 69 (1), pp.38-60. 10.1093/sysbio/syz030. hal-02125214 HAL Id: hal-02125214 https://hal.archives-ouvertes.fr/hal-02125214 Submitted on 10 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Running head Shotgun phylogenomics and molecular dating Title proposal Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syz030/5486398 by guest on 07 May 2019 Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Authors Rémi Allio1*, Céline Scornavacca1,2, Benoit Nabholz1, Anne-Laure Clamens3,4, Felix -
SONUÇ RAPORU GAP Biyolojik Çeşitlilik
SONUÇ RAPORU GAP Biyolojik Çeşitlilik Araştırma Projesi 2001-2003 Doğa koruma ve sürdürülebilir kullanım yoluyla Güneydoğu Anadolu peyzajının ve biyolojik çeşitliliğinin korunması ((. -~ ' ' mm • . ..WWF mm SONUÇ RAPORU GAP Biyolojik Çeşitlilik .·. c;. Araştırma Projesi BAŞ O ~ l~.<!...r-.1 • .- G . ~ 1 1. AP BÖLCE r,111 : .. •A l.:>.~;ı~ ç, BA~KAN Ll ~I 2001-2003 C\llv~'.• '.i'ITASYON Mcl?l<EZİ YER NO /fb _ç DEMiRBAŞ NO 45 30 Doğa koruma ve sürdürülebilir kullamm yoluyla Güneydoğu Anadolu peyzajmm ve biyolojik çeşitliliğ inin korunması Welch, H. J. ed. (2004) GAP Biyolojik Çeş itli l i k Araşt ırm a Projesi 2001 ·2003 - Sonu ç Raporu DHKD (Türkiye Doğa l H ayatı Ko ruma Derneği) , lstanbul, Türkiye Yazarlar HilaryWelch - Derleyen ve Editör O. Emre Can - Büyük Memeliler Yıld ıray Lise - Büyük Memelller Uğur Zeydan lı - Metodoloji ve Peyzaj/Bitki Örtüsü Toplulukları Ayşeg ül Domaç-CBS&UzaktanAlgılama (OHKD) Mecit Vural -Botanik (Gazi Üniversitesi) İbrah i m Baran - Sürüngen ve Çiftyaşarlar (Dokuz Eylül Üniversitesi) GeoffWelch - Kuşlar (RSPB) Bu raporu CD forma tında DHKD / WWF · Tıirkiye'den temin edilebilirsiniz o Türkiye D~al Hayatı Koruma Der~I (DHKD), Nisan 2004 Büyük Postane Caddesi No: 43·45 Kat 5, 34420 Bahçekap ı / lstanbul Tel: (O 212) 528 20 30 Fax: (O 21 2) 528 20 40 [email protected] Çeviri - Selen Akhuy ve Ali Yıldııafp Türkçe Ednöril - Yıldıray Lise, WWF-1ürkiye Düzelti - Deniz Şii/iter Tapan, WWF-1ürkiye RapoıTasanm ve Uygulama - Hilary Wefch Haritalar -Arıegüf Domaç ve Hilary Wefch Referans Gösterme Tüm rapor için önerilen: Welch, H. J. ed. (2004) GAP Biyolojik Çeş i tlilik Araşt ı rma Projesi 2001-2003 - Sonuç Raporu DHKD (Türkiye ~al Hayatı Koruma DemeQO.