Comparative Study of Calcium-Channel Blockers on Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optum Essential Health Benefits Enhanced Formulary PDL January
PENICILLINS ketorolac tromethamineQL GENERIC mefenamic acid amoxicillin/clavulanate potassium nabumetone amoxicillin/clavulanate potassium ER naproxen January 2016 ampicillin naproxen sodium ampicillin sodium naproxen sodium CR ESSENTIAL HEALTH BENEFITS ampicillin-sulbactam naproxen sodium ER ENHANCED PREFERRED DRUG LIST nafcillin sodium naproxen DR The Optum Preferred Drug List is a guide identifying oxacillin sodium oxaprozin preferred brand-name medicines within select penicillin G potassium piroxicam therapeutic categories. The Preferred Drug List may piperacillin sodium/ tazobactam sulindac not include all drugs covered by your prescription sodium tolmetin sodium drug benefit. Generic medicines are available within many of the therapeutic categories listed, in addition piperacillin sodium/tazobactam Fenoprofen Calcium sodium to categories not listed, and should be considered Meclofenamate Sodium piperacillin/tazobactam as the first line of prescribing. Tolmetin Sodium Amoxicillin/Clavulanate Potassium LOW COST GENERIC PREFERRED For benefit coverage or restrictions please check indomethacin your benefit plan document(s). This listing is revised Augmentin meloxicam periodically as new drugs and new prescribing LOW COST GENERIC naproxen kit information becomes available. It is recommended amoxicillin that you bring this list of medications when you or a dicloxacillin sodium CARDIOVASCULAR covered family member sees a physician or other penicillin v potassium ACE-INHIBITORS healthcare provider. GENERIC QUINOLONES captopril ANTI-INFECTIVES -
Supplementary Materials
Supplementary Materials Table S1. The significant drug pairs in potential DDIs examined by the two databases. Micromedex Drugs.com List of drugs paired PK-PD Mechanism details 1. Amiodarone— PD Additive QT-interval prolongation Dronedarone 2. Amiodarone— PK CYP3A inhibition by Ketoconazole Ketoconazole 3. Ciprofloxacin— PD Additive QT-interval prolongation Dronedarone 4. Cyclosporine— PK CYP3A inhibition by Cyclosporine Dronedarone 5. Dronedarone— PK CYP3A inhibition by Erythromycin Erythromycin 6. Dronedarone— PD Additive QT-interval prolongation Flecainide 7. Dronedarone— PK CYP3A4 inhibition by Itraconazole Itraconazole 8. Dronedarone— PK Contraindication Major CYP3A inhibition by Ketoconazole Ketoconazole 9. Dronedarone— PD Additive QT-interval prolongation Procainamide PD 10. Dronedarone—Sotalol Additive QT-interval prolongation 11. Felodipine— PK CYP3A inhibition by Itraconazole Itraconazole 12. Felodipine— PK CYP3A inhibition by Ketoconazole Ketoconazole 13. Itraconazole— PK CYP3A inhibition by Itraconazole Nisoldipine 14. Ketoconazole— PK CYP3A inhibition by Ketoconazole Nisoldipine 15. Praziquantel— PK CYP induction by Rifampin Rifampin PD 1. Amikacin—Furosemide Additive or synergistic toxicity 2. Aminophylline— Decreased clearance of PK Ciprofloxacin Theophylline by Ciprofloxacin 3. Aminophylline— PK Decreased hepatic metabolism Mexiletine 4. Amiodarone— PD Additive effects on QT interval Ciprofloxacin 5. Amiodarone—Digoxin PK P-glycoprotein inhibition by Amiodarone 6. Amiodarone— PD, PK Major Major Additive effects on QT Erythromycin prolongation, CYP3A inhibition by Erythromycin 7. Amiodarone— PD, PK Flecainide Antiarrhythmic inhibition by Amiodarone, CYP2D inhibition by Amiodarone 8. Amiodarone— PK CYP3A inhibition by Itraconazole Itraconazole 9. Amiodarone— PD Antiarrhythmic inhibition by Procainamide Amiodarone 10. Amiodarone— PK CYP induction by Rifampin Rifampin PD Additive effects on refractory 11. Amiodarone—Sotalol potential 12. Amiodarone— PK CYP3A inhibition by Verapamil Verapamil 13. -
Grapefruit Juice May Cause Prescription Drug Interactions
Grapefruit Juice May Cause Prescription Drug Interactions Grapefruit juice provides many nutrients, including vitamin C, potassium and lycopene. But chemicals in grapefruit juice and grapefruit pulp interfere with the enzymes that break down (metabolize) various drugs in the digestive system — including certain calcium channel blockers and cholesterol- lowering drugs. The result can be excessively high levels of these drugs in the blood and an increased risk of potentially serious side effects. Pomelos and Seville oranges, a type of bitter orange often used to make marmalade and compotes, may have a similar effect. Here's a sampling of drugs known to have potentially serious interactions with grapefruit products: Drug name Type of drug Amiodarone (Cordarone) A drug used to treat and prevent abnormal heart rhythms (arrhythmias) Buspirone (BuSpar), sertraline (Zoloft) Antidepressants Carbamazepine (Carbatrol, Tegretol) An anti-seizure medication Cyclosporine (Neoral, Sandimmune), tacrolimus Immunosuppressant drugs (Prograf) Felodipine (Plendil), nifedipine (Procardia), Calcium channel blockers used to treat high blood nimodipine (Nimotop), nisoldipine (Sular) pressure Saquinavir An HIV medication Simvastatin (Zocor), lovastatin (Mevacor), Statins used to treat high cholesterol atorvastatin (Lipitor) If you're concerned about the effect grapefruit juice may have on your medications, talk to your doctor or pharmacist. In some cases, it may be important to avoid grapefruit and grapefruit products, as well as pomelos, Seville oranges and products made with these fruits. Waiting to take these medications — even up to 24 hours — after you drink grapefruit juice won't prevent an interaction. In other cases, it may be possible to switch to an alternative medication that won't interact with these fruits. -
Effect of Amlodipine and Indomethacin in Electrical and Picrotoxin Induced Convulsions in Mice
DOI: 10.5958/2319-5886.2014.00402.0 International Journal of Medical Research & Health Sciences www.ijmrhs.com Volume 3 Issue 3 Coden: IJMRHS Copyright @2014 ISSN: 2319-5886 Received: 9th Apr 2014 Revised: 3rd Jun 2014 Accepted: 14th Jun 2014 Research Article EFFECT OF AMLODIPINE AND INDOMETHACIN IN ELECTRICAL AND PICROTOXIN INDUCED CONVULSIONS IN MICE *Jagathi Devi N1, Prasanna V2 1Assistant Professor, 2Professor and Head, Department of Pharmacology, Osmania Medical College, Hyderabad *Corresponding author email: [email protected] ABSTRACT Background and Objectives: Antiepileptic drugs (AEDs) are the drugs used in the treatment of epilepsy. Many AEDs have been developed, but the ideal AED which can not only prevent but also abolish seizures by correcting the underlying pathophysiology is still not in sight. Calcium channel blockers (CCBs) may form such a group, as the initiation of epileptogenic activity in the neuron is connected with a phenomenon known as “intrinsic burst firing” which is activated by inward calcium current. In this study, Amlodipine, a CCB of the dihydropyridine class was evaluated for its anticonvulsant activity in mice. It was compared with Phenytoin sodium, one of the oldest anti epileptic drugs. Amlodipine was also combined with Indomethacin, a conventional NSAID, to look for any potentiating effect of this prostaglandin-synthesis inhibitor. Materials and Methods: A total of 48 adult Swiss albino mice of either sex weighing 20-30 G were used for this study; 48 were divided into 8 groups, each group containing 6 mice. Group 1-4 MES (50 m Amp for 0.1 secs) induced convulsion method, Group 5-8 evaluated by using the chemo-convulsant, picrotoxin (0.7 mg / kg). -
Neurochemical Mechanisms Underlying Alcohol Withdrawal
Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments. -
Anaesthetic Implications of Calcium Channel Blockers
436 Anaesthetic implications of calcium channel Leonard C. Jenkins aA MD CM FRCPC blockers Peter J. Scoates a sc MD FRCPC CONTENTS The object of this review is to emphasize the anaesthetic implications of calcium channel block- Physiology - calcium/calcium channel blockers Uses of calcium channel blockers ers for the practising anaesthetist. These drugs have Traditional played an expanding role in therapeutics since their Angina pectoris introduction and thus anaesthetists can expect to see Arrhythmias increasing numbers of patients presenting for anaes- Hypertension thesia who are being treated with calcium channel Newer and investigational Cardiac blockers. Other reviews have emphasized the basic - Hypertrophic cardiomyopathy pharmacology of calcium channel blockers. 1-7 - Cold cardioplegia - Pulmonary hypertension Physiology - calcium/calcium channel blockers Actions on platelets Calcium plays an important role in many physio- Asthma Obstetrics logical processes, such as blood coagulation, en- - Premature labor zyme systems, muscle contraction, bone metabo- - Pre-eclampsia lism, synaptic transmission, and cell membrane Achalasia and oesophageal spasm excitability. Especially important is the role of Increased intraocular pressure therapy calcium in myocardial contractility and conduction Protective effect on kidney after radiocontrast Cerebral vasospasm as well as in vascular smooth muscle reactivity. 7 Induced hypotensive anaesthesia Thus, it can be anticipated that any drug interfering Drag interactions with calcium channel blockers with the action of calcium could have widespread With anaesthetic agents effects. Inhalation agents In order to understand the importance of calcium - Effect on haemodynamics - Effect on MAC in cellular excitation, it is necessary to review some Neuromuscular blockers membrane physiology. Cell membranes are pri- Effects on epinephrine-induced arrhythmias marily phospholipids arranged in a bilayer. -
Download Product Insert (PDF)
PRODUCT INFORMATION Nisoldipine Item No. 20998 CAS Registry No.: 63675-72-9 Formal Name: 1,4-dihydro-2,6-dimethyl-4-(2- nitrophenyl)-3,5-pyridinedicarboxylic acid, 3-methyl 5-(2-methylpropyl) ester NO Synonyms: (±)-BAY-K-5552, (±)-Nisoldipine 2 O O MF: C20H24N2O6 FW: 388.4 O O Purity: ≥97% UV/Vis.: λ: 235, 330 nm max N Supplied as: A crystalline solid Storage: Room temperature H Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Nisoldipine is supplied as a crystalline solid. A stock solution may be made by dissolving the nisoldipine in the solvent of choice. Nisoldipine is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of nisoldipine in ethanol is approximately 3 mg/ml and approximately 30 mg/ml in DMSO and DMF. Nisoldipine is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, nisoldipine should first be dissolved in DMSO and then diluted with the aqueous buffer of choice. Nisoldipine has a solubility of approximately 0.1 mg/ml in a 1:10 solution of DMSO:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Nisoldipine is a calcium channel inhibitor.1 It binds to calcium channels in isolated rat ventricular 1,2 membranes (Kd = 0.04 nM) and inhibits calcium uptake by smooth muscle cells. Nisoldipine inhibits 1 acetylcholine-induced contraction of isolated rabbit coronary arteries (IC50 = 0.03 nM). -
2021 Formulary List of Covered Prescription Drugs
2021 Formulary List of covered prescription drugs This drug list applies to all Individual HMO products and the following Small Group HMO products: Sharp Platinum 90 Performance HMO, Sharp Platinum 90 Performance HMO AI-AN, Sharp Platinum 90 Premier HMO, Sharp Platinum 90 Premier HMO AI-AN, Sharp Gold 80 Performance HMO, Sharp Gold 80 Performance HMO AI-AN, Sharp Gold 80 Premier HMO, Sharp Gold 80 Premier HMO AI-AN, Sharp Silver 70 Performance HMO, Sharp Silver 70 Performance HMO AI-AN, Sharp Silver 70 Premier HMO, Sharp Silver 70 Premier HMO AI-AN, Sharp Silver 73 Performance HMO, Sharp Silver 73 Premier HMO, Sharp Silver 87 Performance HMO, Sharp Silver 87 Premier HMO, Sharp Silver 94 Performance HMO, Sharp Silver 94 Premier HMO, Sharp Bronze 60 Performance HMO, Sharp Bronze 60 Performance HMO AI-AN, Sharp Bronze 60 Premier HDHP HMO, Sharp Bronze 60 Premier HDHP HMO AI-AN, Sharp Minimum Coverage Performance HMO, Sharp $0 Cost Share Performance HMO AI-AN, Sharp $0 Cost Share Premier HMO AI-AN, Sharp Silver 70 Off Exchange Performance HMO, Sharp Silver 70 Off Exchange Premier HMO, Sharp Performance Platinum 90 HMO 0/15 + Child Dental, Sharp Premier Platinum 90 HMO 0/20 + Child Dental, Sharp Performance Gold 80 HMO 350 /25 + Child Dental, Sharp Premier Gold 80 HMO 250/35 + Child Dental, Sharp Performance Silver 70 HMO 2250/50 + Child Dental, Sharp Premier Silver 70 HMO 2250/55 + Child Dental, Sharp Premier Silver 70 HDHP HMO 2500/20% + Child Dental, Sharp Performance Bronze 60 HMO 6300/65 + Child Dental, Sharp Premier Bronze 60 HDHP HMO -
Dental Management for the Hypertensive Patient
HYPERTENSION AND ORAL HEALTH: EPIDEMIOLOGIC AND CLINICAL PERSPECTIVES Janet H Southerland, DDS, MPH, PhD Professor, Department of Oral and Maxillofacial Surgery School of Dentistry, Meharry Medical College December 9, 2016 Provide an overview of concerns with treating patients with hypertension and GOAL provide recommendations that will be helpful in managing a broad spectrum of these patients. EVALUATION Evaluation for hypertension has three objectives: 1. to assess lifestyle and identify other cardiovascular risk factors or concomitant disorders that may affect prognosis and guide treatment. 2. to reveal identifiable causes of high BP. 3. to assess the presence or absence of target organ damage and cardiovascular disease (CVD). TARGET ORGAN DAMAGE Heart Left ventricular hypertrophy Angina or prior myocardial infarction Prior coronary revascularization Heart Failure Brain Stroke or transient ischemic attack Chronic kidney disease Peripheral artery disease Retinopathy The relationship between BP and risk of CVD events is continuous, consistent, and independent of other risk factors. The higher the BP, the greater is the chance of heart attack, heart failure, stroke, and kidney disease. INTRODUCTION The risk of developing CVD doubles for every increment of 20 mm Hg Systolic (SBP) or 10 mm Hg of Diastolic (DBP). The risk of dying of ischemic heart disease and stroke increases progressively and linearly when blood pressure exceeds 115/75 mm Hg. The 7th and 8th Joint National Committee (JNC-7 and 8) reports provide guidelines for blood pressure management and treatment. The JNC-8 panel confirms that the >140/90 mmHg definition for hypertension from the INTRODUCTION JNC 7 report remains the standard for diagnosis for individuals who do not have additional comorbidities. -
Therapeutic Class Overview Anticonvulsants
Therapeutic Class Overview Anticonvulsants Therapeutic Class Overview/Summary: The anticonvulsants are Food and Drug Administration (FDA)-approved for the prevention and/or treatment of various seizure disorders either as monotherapy or adjunctive therapy. Some anticonvulsants are also FDA-approved for the prevention of migraines, and management of bipolar disorders, fibromyalgia, neuropathic pain and other non-seizure related conditions. The specific FDA-approved indications for each of these agents are outlined in Table 1.1-44 Seizure disorders are classified into four major categories: partial seizures (seizures beginning locally), generalized seizures (bilaterally symmetrical and without local onset), unilateral seizures (seizures that are predominantly unilateral) and unclassified epileptic seizures (seizures that are unclassifiable because of incomplete data). Partial seizures are subdivided into those with elementary symptomatology, those with complex symptomatology, and those that are secondarily generalized. Partial seizures with elementary symptomatology include those with motor symptoms (e.g., Jacksonian seizures) or with autonomic symptoms. Partial seizures with complex symptomatology are also known as temporal lobe or psychomotor seizures. Generalized seizures include tonic-clonic (grand mal) seizures, absence (petit mal) seizures, myoclonic seizures and akinetic seizures. Two or more seizures that occur sequentially without full recovery of consciousness between the seizures or seizures that last more than 30 minutes are known as status epilepticus.45 Pharmacologic management of epilepsy should be individualized, and focused on controlling seizures, avoiding treatment-related adverse events and maintaining or restoring quality of life.46 Prior to 1990, six major antiepileptic drugs were available for the treatment of various forms of epilepsy, including carbamazepine, ethosuximide, phenobarbital, phenytoin, primidone and valproic acid. -
Association of Preterm Birth with Depression and Particulate Matter: Machine Learning Analysis Using National Health Insurance Data
National Health Insurance Data HealthInsurance National Using Analysis Learning Matter:Machine Particulate and Depression of Pretermwith Association Birth Supplementary Materials PTB1 Average 1000.00 1200.00 1400.00 1000.00 1200.00 1400.00 1600.00 200.00 400.00 600.00 800.00 200.00 400.00 600.00 800.00 0.00 0.00 Socioeconomic Status Socioeconomic Status Age Age Proton Pump Inhibitor Proton Pump Inhibitor Benzodiazepine Benzodiazepine Tricyclic Antidepressant GERD_2014 GERD_2014 GERD_2013 GERD_2013 Tricyclic Antidepressant GERD_2012 GERD_2012 GERD_2011 GERD_2011 Sleeping Pills Sleeping Pills GERD_2010 GERD_2010 GERD_2009 GERD_2009 Progesterone PM_2014_07 GERD_2008 PM_2014_01 PM_2014_07 PM_2014_06 PM_2014_06 PM_2014_12 PM_2014_05 PM_2014_08 PM_2014_04 PM_2014_10 PM_2014_01 PM_2014_11 PM_2014_12 PM_2014_09 PM_2014_10 PM_2014_05 PM_2014_09 PM_2014_02 PM_2014_11 PM_2014_04 PM_2014_02 PM_2014_03 PM_2014_08 Progesterone PM_2014_03 GERD_2008 Region Region GERD_2007 GERD_2007 Myoma Uteri Myoma Uteri GERD_2006 GERD_2006 Diabetes_2014 GERD_2005 GERD_2005 Diabetes_2014 GERD_2004 GERD_2004 Depression_2013 GERD_2003 GERD_2003 Depression_2013 Depression_2014 Depression_2014 Diabetes_2013 Diabetes_2013 Depression_2011 Depression_2012 Depression_2012 Depression_2011 GERD_2002 Calcium Channel Blocker Calcium Channel Blocker Diabetes_2012 Depression_2010 GERD_2002 Diabetes_2012 Depression_2010 Depression_2009 Depression_2009 Depression_2007 Diabetes_2010 Diabetes_2009 Diabetes_2011 Diabetes_2010 Depression_2007 Diabetes_2008 Depression_2008 Depression_2006 -
Calcium Channel Blockers
Calcium Channel Blockers Summary In general, calcium channel blockers (CCBs) are used most often for the management of hypertension and angina. There are 2 classes of CCBs: the dihydropyridines (DHPs), which have greater selectivity for vascular smooth muscle cells than for cardiac myocytes, and the non-DHPs, which have greater selectivity for cardiac myocytes and are used for cardiac arrhythmias. The DHPs cause peripheral edema, headaches, and postural hypotension most commonly, all of which are due to the peripheral vasodilatory effects of the drugs in this class of CCBs. The non-DHPs are negative inotropes and chronotropes; they can cause bradycardia and depress AV node conduction, increasing the risk of heart failure exacerbation, bradycardia, and AV block. Clevidipine is a DHP calcium channel blocker administered via continuous IV infusion and used for rapid blood pressure reductions. All CCBs are substrates of CYP3A4, but both diltiazem and verapamil are also inhibitors of 3A4 and have an increased risk of drug interactions. Verapamil also inhibits CYP2C9, CYP2C19, and CYP1A2. Pharmacology CCBs selectively inhibit the voltage-gated L-type calcium channels on cardiac myocytes, vascular smooth muscle cells, and cells within the sinoatrial (SA) and atrioventricular (AV) nodes, preventing influx of extracellular calcium. CCBs act by either deforming the channels, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the major cellular calcium store, the endoplasmic reticulum. Calcium influx via these channels serves for excitation-contraction coupling and electrical discharge in the heart and vasculature. A decrease in intracellular calcium will result in inhibition of the contractile process of the myocardial smooth muscle cells, resulting in dilation of the coronary and peripheral arterial vasculature.