Diltiazem Added to Local Anesthetic in Sonar Guided Coracoid Infraclavicular Brachial Plexus Block

Total Page:16

File Type:pdf, Size:1020Kb

Diltiazem Added to Local Anesthetic in Sonar Guided Coracoid Infraclavicular Brachial Plexus Block Journal of Clinical Anesthesia and Pain Medicine Research Article Diltiazem Added to Local Anesthetic in Sonar Guided Coracoid Infraclavicular Brachial Plexus Block. Dose Sparing Effect This article was published in the following Scient Open Access Journal: Journal of Clinical Anesthesia and Pain Medicine Received November 01, 2017; Accepted March 15, 2018; Published April 07, 2018 Abstract 1 1 Ashraf E Alzeftawy *, Hesham E Elsheikh Background: This study was performed to evaluate the addition of diltiazem to local 1Assistant Professors of Anesthesia and Surgical anesthetic during sonar guided infraclavicular brachial plexus block as regards to its intra Intensive care, Department of Anesthesia and and postoperative analgesic quality. Surgical Intensive care, Tanta University, Tanta, Egypt Methods: In a randomized, prospective double blind study, 90 patients aged between 18-70 years with ASA Grade I and II, were randomly classified into 3 groups. Group I received 30 ml containing 14 ml 0.5% bupivacaine and 14 ml lidocaine 2% plus 2 ml saline and group II received same volume of local anesthetic and diltiazem 20mg in 2 ml saline. while group III received 30 ml containing 10 ml 0.5% bupivacaine , 10 ml lidocaine 2% and diltiazem 20mg in 10 ml saline. Onset of sensory and motor block , quality of the block , postoperative analgesia, and any complications of the procedure were recorded. Results: Onset of sensory and motor block was significantly shorter in group II compared to other groups. Quality of the block in the three groups was comparable. Significantly prolonged duration of sensory and motor block and prolonged duration of analgesia were present in group II compared to other groups. Time of first analgesic request was significantly longer in group II. Analgesic consumption was lower in group II. .Hemodynamic changes and side effects were comparable. Conclusion: The addition of 20mg diltiazem to local anesthetic solution in sonar guided infraclavicular brachial plexus block hastened the onset of anesthesia and prolonged duration of postoperative analgesia without complications and can have a dose sparing effect on local anesthetics sufficient to produce adequate block. Keywords: Diltiazem, Infraclavicular , Sonar, Brachial Plexus Block Introduction The ultrasound guided infraclavicular block via the coracoid approach is an attractive technique providing an excellent block [1]. When compared to the midclavicular approach (Raj approach), the coracoid approach is associated with a lower risk of pneumothorax [2]. Peripheral nerve block, done with ultrasound guidance enables well visualization of the nerve bundle and its adjacent structures and secures an accurate needle placement in improved quality of nerve block, shorter performance time, with reduction of the requiredwith visual local confirmation anesthetic ofvolume the distribution and lower ofrisk the of injected intraneural, local intravascularanesthetic. This injection, results and pleural puncture [3]. Unfortunately, their duration may not be adequate without adequate postoperative analgesia [4]. This limitation is addressed by adding adjunctive drugs to prolong duration and enhance quality of regional blocks. These additives include opioids, midazolam, alpha2 agonists, ketamine, neostigmine, nonsteroidal corticosteroids but none has conclusive results [5,6]. anti-inflammatory drugs, hyaluronidase, bicarbonate, calcium channel blockers and Calcium has an important role in pain transmission. Activation of N-methyl- D-aspartic acid (NMDA) receptors leads to increased intracellular calcium which *Corresponding Author: Ashraf Elsayed Alzeftawy, initiates central sensitization in the spinal cord. So that calcium channel blockers may be Assistant Professors of Anesthesia and Surgical Intensive care, Department of Anesthesia and effective in preventing this central sensitization [7]. Calcium ions also have an important Surgical Intensive care, Tanta University Shober role in the analgesia mediated by local anesthetics. Local anesthetics reduce calcium Street, Rawda Tower, Flat 2, Tanta, Egypt, permeability and clinical investigations have shown that calcium channel blockers can Tel:00201223713667, increase the analgesic effect of local anesthetics. (11) Several studies suggest that the Email: [email protected] Volume 2 • Issue 2 • 018 www.scientonline.org J Clin Anesth Pain Med Citation: Ashraf E Alzeftawy, Hesham E Elsheikh (2018). Diltiazem Added to Local Anesthetic in Sonar Guided Coracoid Infraclavicular Brachial Plexus Block. Dose Sparing Effect Page 2 of 7 concomitant administration of calcium channel blockers with ultrasound machine (SonoSite, Washington, USA) with a 7.5-MHz opioids might increase their analgesic effects [8], and that these drugs by themselves may possess analgesic properties [9]. the block. fixed frequency and linear ultrasonic probe was used to perform To the best of our knowledge diltiazem had not been tried After complete aseptic technique, the infraclavicular area was results. The aim of this study was to investigate the effect of the insertion point. The probe was put just medial to the coracoid deltiazemfor peripheral as an adjuvantnerve blocks to local and anesthetics verapamil during had sonar conflicting guided processdraped andbelow 2ml the lidocaines clavicle 2%and werein-plane used technique for skin infiltration was used toat infraclavicular brachial plexus block through the coracoids visualize the neurovascular bundle in the parasagittal plane. The approach and whether it could reduce the total dose of local probe was adjusted to obtain an adequate cross-sectional view of the axillary artery, with viewing all the cords in relation to the artery, including the medial, lateral and posterior sides. The18- anestheticPatients sufficient and Methods to produce an adequate block. gauge Tuohy needle was advanced in a caudal direction, and Study center and population posteriorly towards the neurovascular structures with its bevel This prospective, randomized double blind study was site with the needle positioned posterior to the axillary artery, performed in Tanta university hospital ,Faculty of medicine ,Tanta thefacing local superioly anesthetic till it was was slowly fully viewed. administered After confirming in a single the injection target university, Tanta ,Egypt from October 2017 until December 2017, with 5 ml aliquots and frequent aspiration to avoid intraneural after obtaining ethical committee approval (code : 30912/ 05/ and intravascular injection. If paraesthesia was elicited, the 16)and patient informed consent. needle was withdrawn back 2-3 mm till no more paraesthesia The clinical trial was registered at the Pan African Clinical was elicited before injection. If blood aspiration occurred, the needle was repositioned before injection of local anesthetic. number for the registry is PACTR201711002712946. Sensory block was initially tested by an independent observer Trial Registry (www.pactr.org) database. The identification 90 patients, aged 18-70 years with American Society of Anesthesiologists’ status I- II scheduled for forearrn and hand assessed using pin brick by a 22-gauge hypodermic needle at surgery were included. Exclusion criteria included patients with theat five following minutes areas, intervals the thenar for 30eminence minutes. innervated Sensory byblock median was nerve, the hypothenar region innervated by the ulnar nerve, the drug, a local skin infection, known neuropathies and history of dorsum of the hand innervated by the radial nerve, the lateral conductivesignificant heartcoagulopathy, disease. allergy to local anesthetic or study aspect of the forearm innervated by the musculocutaneous nerve and the area over the insertion of the deltoid muscle for the Randomization: Computer generated random numbers concealed in sealed envelopes technique was used for for the musculocutaneous, wrist extension for the radial nerve, randomization. axillary nerve. Motor block was evaluated using forearm flexion patients each. Group I, control group received 30 ml containing powerthumb wasand comparedindex finger in relation opposition, to the for contralateral the median side. nerve and 14 mlPatients 0.5 % bupivacainewere randomely and 14 classifiedml lignocaine into 2% three plus groups2 ml saline 30 thumb and little finger opposition for the ulnar nerve .The muscle and group II received 30ml containing 14 ml 5% bupivacaine, 14 injection to complete loss of response to pain and complete loss ml lignocaine 2% and diltiazem 20mg in 2ml saline . while group of motorOnset power. of the Anesthesia block was was defined considered as the to time be at from surgical the level last III received 30 ml containing 10 ml 0.5% bupivacaine , 10 ml when the patient could not feel pain from the needle in tested lignocaine 2% and diltiazem 20mg in 10ml saline. areas and was unable to move the shoulder, elbow and/or wrist The solution to be injected was prepared by an independent In the operating room, sedation was administered by anesthesiologist in identical syringes. The block was administered and observations made by anesthesiologists blinded to the solution or group allocation. midazolam 0.5-1mg for anxiety and fentanyl 50μg for pain outside Intervention: Preoperatively, the infraclavicular block and ofthe local operating anesthetics, field. Surgical administration block success of analgesics was defined for pain by a innerve the the visual analogue scale were explained to the patients, medical block that allowed surgery without
Recommended publications
  • Hallucinogens - LSD, Peyote, Psilocybin, and PCP
    Information for Behavioral Health Providers in Primary Care Hallucinogens - LSD, Peyote, Psilocybin, and PCP What are Hallucinogens? Hallucinogenic compounds found in some plants and mushrooms (or their extracts) have been used— mostly during religious rituals—for centuries. Almost all hallucinogens contain nitrogen and are classified as alkaloids. Many hallucinogens have chemical structures similar to those of natural neurotransmitters (e.g., acetylcholine-, serotonin-, or catecholamine-like). While the exact mechanisms by which hallucinogens exert their effects remain unclear, research suggests that these drugs work, at least partially, by temporarily interfering with neurotransmitter action or by binding to their receptor sites. This InfoFacts will discuss four common types of hallucinogens: LSD (d-lysergic acid diethylamide) is one of the most potent mood-changing chemicals. It was discovered in 1938 and is manufactured from lysergic acid, which is found in ergot, a fungus that grows on rye and other grains. Peyote is a small, spineless cactus in which the principal active ingredient is mescaline. This plant has been used by natives in northern Mexico and the southwestern United States as a part of religious ceremonies. Mescaline can also be produced through chemical synthesis. Psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) is obtained from certain types of mushrooms that are indigenous to tropical and subtropical regions of South America, Mexico, and the United States. These mushrooms typically contain less than 0.5 percent psilocybin plus trace amounts of psilocin, another hallucinogenic substance. PCP (phencyclidine) was developed in the 1950s as an intravenous anesthetic. Its use has since been discontinued due to serious adverse effects. How Are Hallucinogens Abused? The very same characteristics that led to the incorporation of hallucinogens into ritualistic or spiritual traditions have also led to their propagation as drugs of abuse.
    [Show full text]
  • Local Anesthetic Half Life (In Hours) Lidocaine 1.6 Mepivacaine 1.9 Bupivacaine 353.5 Prilocaine 1.6 Articaine 0.5
    Local Anesthetics • The first local anesthetics History were cocaine and procaine (Novacain) developed in ltlate 1800’s • They were called “esters” because of their chemical composition • Esters had a slow onset and short half life so they did not last long History • Derivatives of esters called “amides” were developed in the 1930’s • Amides had a faster onset and a longer half life so they lasted longer • AidAmides quiklickly repldlaced esters • In dentistry today, esters are only found in topical anesthetics Generic Local Anesthetics • There are five amide anesthetics used in dentistry today. Their generic names are; – lidocaine – mepivocaine – bupivacaine – prilocaine – artica ine • Each is known by at least one brand name Brand Names • lidocaine : Xylocaine, Lignospan, Alphacaine, Octocaine • mepivocaine: Carbocaine, Arestocaine, Isocaine, Polocaine, Scandonest • prilocaine : Citanest, Citanest Forte • bibupivaca ine: MiMarcaine • articaine: Septocaine, Zorcaine About Local Anesthetic (LA) • Local anesthetic (LA) works by binding with sodium channels in neurons preventing depolarization • LA is inactivated at the injection site when it is absorbed into the blood stream and redistributed throughout the body • If enough LA is absorbed, sodium channels in other parts of the body will be blocked, causing systemic side effects About LA • A clinical effect of LAs is dilation blood vessels, speeding up absorption and distribution • To counteract this dilation so anesthesia is prolonged, , a vasoconstrictor is often added to LAs • However, vasoconstrictors have side effects also Metabolism and Excretion • Most amide LAs are metabolized (inactivated) by the liver and excreted by the kidneys. • Prilocaine is partially metabolized by the lungs • Articaine is partially metabolized by enzymes in the bloo d as well as the liver.
    [Show full text]
  • Monitoring Anesthetic Depth
    ANESTHETIC MONITORING Lyon Lee DVM PhD DACVA MONITORING ANESTHETIC DEPTH • The central nervous system is progressively depressed under general anesthesia. • Different stages of anesthesia will accompany different physiological reflexes and responses (see table below, Guedel’s signs and stages). Table 1. Guedel’s (1937) Signs and Stages of Anesthesia based on ‘Ether’ anesthesia in cats. Stages Description 1 Inducement, excitement, pupils constricted, voluntary struggling Obtunded reflexes, pupil diameters start to dilate, still excited, 2 involuntary struggling 3 Planes There are three planes- light, medium, and deep More decreased reflexes, pupils constricted, brisk palpebral reflex, Light corneal reflex, absence of swallowing reflex, lacrimation still present, no involuntary muscle movement. Ideal plane for most invasive procedures, pupils dilated, loss of pain, Medium loss of palpebral reflex, corneal reflexes present. Respiratory depression, severe muscle relaxation, bradycardia, no Deep (early overdose) reflexes (palpebral, corneal), pupils dilated Very deep anesthesia. Respiration ceases, cardiovascular function 4 depresses and death ensues immediately. • Due to arrival of newer inhalation anesthetics and concurrent use of injectable anesthetics and neuromuscular blockers the above classic signs do not fit well in most circumstances. • Modern concept has two stages simply dividing it into ‘awake’ and ‘unconscious’. • One should recognize and familiarize the reflexes with different physiologic signs to avoid any untoward side effects and complications • The system must be continuously monitored, and not neglected in favor of other signs of anesthesia. • Take all the information into account, not just one sign of anesthetic depth. • A major problem faced by all anesthetists is to avoid both ‘too light’ anesthesia with the risk of sudden violent movement and the dangerous ‘too deep’ anesthesia stage.
    [Show full text]
  • Hallucinogens
    Hallucinogens What Are Hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and others are synthetic (human-made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes. Hallucinogens are a Types of Hallucinogens diverse group of drugs Classic Hallucinogens that alter perception, LSD (D-lysergic acid diethylamide) is one of the most powerful mind- thoughts, and feelings. altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other Hallucinogens are split grains. into two categories: Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) comes from certain classic hallucinogens and types of mushrooms found in tropical and subtropical regions of South dissociative drugs. America, Mexico, and the United States. Peyote (mescaline) is a small, spineless cactus with mescaline as its main People use hallucinogens ingredient. Peyote can also be synthetic. in a wide variety of ways DMT (N,N-dimethyltryptamine) is a powerful chemical found naturally in some Amazonian plants. People can also make DMT in a lab.
    [Show full text]
  • Topical Therapy As a Treatmentfor Brachioradial
    Journal of Case Reports: Open Access Case report Open Access Topical Therapy as a Treatmentfor Brachioradial Pruritis: a Case Report Brianna De Souza M.D, Amy McMichael M.D* Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina *Corresponding author: Amy McMichael, MD Department of Dermatology, Wake Forest Baptist Medical Center,1 Medical Center Blvd, Winston-Salem, NC 27157, Phone: 336-716-7882, Email: [email protected] Received Date: April 12, 2019 Accepted Date: May 06, 2019 Published Date: May 08, 2019 Citation: Brianna De Souza (2019) Topical Therapy as a Treatmentfor Brachioradial Pruritis: a Case Report. Case Reports: Open Access 4: 1-5. Abstract Management of brachioradial pruritus (BRP) presents a formidable challenge to dermatologists and neurologists. BRP is a rare, neurocutaneous condition characterized by sharply localized, chronic pain with associated itching, burning, stinging, and or tingling sensation. Effective care of this patient population is confounded by limitations within the litera- ture, comprised of case series and case reports. We present a case of one middle-aged female with a chronic history of BRP recalcitrant to the following oral therapies: pregabalin, gabapentin, mirtazapine, prednisone, and amitriptyline, as well as topical triamcinolone. After being evaluated in the clinic, the patient was started on combination therapy withKetamine 10%, Amitriptyline 5%, and Lidocaine 5% topical cream to which she responded. Keywords: Brachioradial pruritus, Brachioradial, Pruritus, Neurocutaneous ©2019 The Authors. Published by the JScholar under the terms of the Crea- tive Commons Attribution License http://creativecommons.org/licenses/ by/3.0/, which permits unrestricted use, provided the original author and source are credited.
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]
  • Effect of Amlodipine and Indomethacin in Electrical and Picrotoxin Induced Convulsions in Mice
    DOI: 10.5958/2319-5886.2014.00402.0 International Journal of Medical Research & Health Sciences www.ijmrhs.com Volume 3 Issue 3 Coden: IJMRHS Copyright @2014 ISSN: 2319-5886 Received: 9th Apr 2014 Revised: 3rd Jun 2014 Accepted: 14th Jun 2014 Research Article EFFECT OF AMLODIPINE AND INDOMETHACIN IN ELECTRICAL AND PICROTOXIN INDUCED CONVULSIONS IN MICE *Jagathi Devi N1, Prasanna V2 1Assistant Professor, 2Professor and Head, Department of Pharmacology, Osmania Medical College, Hyderabad *Corresponding author email: [email protected] ABSTRACT Background and Objectives: Antiepileptic drugs (AEDs) are the drugs used in the treatment of epilepsy. Many AEDs have been developed, but the ideal AED which can not only prevent but also abolish seizures by correcting the underlying pathophysiology is still not in sight. Calcium channel blockers (CCBs) may form such a group, as the initiation of epileptogenic activity in the neuron is connected with a phenomenon known as “intrinsic burst firing” which is activated by inward calcium current. In this study, Amlodipine, a CCB of the dihydropyridine class was evaluated for its anticonvulsant activity in mice. It was compared with Phenytoin sodium, one of the oldest anti epileptic drugs. Amlodipine was also combined with Indomethacin, a conventional NSAID, to look for any potentiating effect of this prostaglandin-synthesis inhibitor. Materials and Methods: A total of 48 adult Swiss albino mice of either sex weighing 20-30 G were used for this study; 48 were divided into 8 groups, each group containing 6 mice. Group 1-4 MES (50 m Amp for 0.1 secs) induced convulsion method, Group 5-8 evaluated by using the chemo-convulsant, picrotoxin (0.7 mg / kg).
    [Show full text]
  • Calcium-Channel Blockers and Anaesthesia
    75 Review Article Calcium-channel blockers and Pierre-Georges Durand MD,* Jean-Jacques Lehot MD,* Pierre Fo~x D I)l'h~" anaesthesia Verapamil was the first calcium-channel blocker (CCB). It has Contents been used since 1962 in Europe then in Japan for its anti- Comparative pharmacology of calcium-channel blockers arrhythmic and coronary vasodilator effects/ The CCB have (CCB) become prominant cardiovascular drugs during the last 15 - Classification and chemical characteristics ),ears. Many experimental and clinical studies ha ve defined their - Mechanism of action mechanism of action, the effects of new drugs in this therapeutic - Pharmacokinetics class, and their indications and interactions with other drugs. - Interactions Due to the large number of patients treated with CCB it is - Pharmacodynamic effects important for the anaesthetist to know the general and specific Indications not related to anaesthesia problems involved during the perioperative period, the interac- - Confirmed indications tions with anaesthetics and the practical use of these drugs. - Possible indications Pharmacological interactions in anaesthesia Le verapamil a dtd initialement utilis6 comme un bloqueur des - Halogenated anaesthetics canaux calciques (CCB). 11 a ~t~ utilis6 depuis 1962 eta Europe - Other anaesthetics puis au Japon pour ses propri~tds anti-arythmiques et ses - Neuromuscular relaxants effets vaso-dilatateurs coronariens, i Les CCB sont devenus des Perioperative use drogues cardiovasculaires de choix depuis les 15 dernikres - Myocardial ischaemia
    [Show full text]
  • Lidocaine Infusion for Analgesia MOA Pharmacology 1
    Lidocaine Infusion for Analgesia MOA Pharmacology 1. Attenuation of proinflammatory effects: Ø Hepatic metabolism with high extraction ratio; Ø Blocks polymorphonuclear granulocyte priming, plasma clearance is 10 ml/kg/min13 reducing release of cytokines & reactive oxygen species1 Ø Adjust dose based on hepatic function and 2. Diminish nociceptive signaling to central nervous system: blood flow Ø Inhibition of G-protein-mediated effects2 Ø Renal clearance of metabolites Ø Reduces sensitivity & activity of spinal cord neurons Ø Context-sensitive half-time after a 3-day infusion is (glycine and NMDA receptor mediated)3,4 ∼20–40 min Ø Clinical effect of lidocaine tends to exceed the 5 3. Reduces ectopic activity of injured afferent nerves duration of the infusion by 5.5 times the half-life, supporting the putative preventive analgesia effect14 Perioperative Use Dosing Ø IV local anesthetic infusions have been used safely for pain control in the perioperative setting since the early 1950’s6,7 Infusion: 2mg/kg/hr (range 1.5-3 mg/kg/hr) Ø Reduce pain, nausea, ileus duration, opioid requirement, Loading dose: 1.5mg/kg (range 1-2 mg/kg) and length of hospital stay Ø Strongly consider bolus to rapidly achieve therapeutic concentration, otherwise steady state 9-12 Evidence for Specific Surgeries: reached in 4-8 hr Ø Strong: Open & laparoscopic abdominal; Reduces Max dose: 4.5 mg/kg postoperative pain, speeds return of bowel function, Ø Consider total dose from other local anesthetics reduces PONV, reduces length of hospital stay (e.g. regional anesthesia, periarticular injections, & Ø Moderate: Open prostatectomy, thoracic procedures, local infiltration) ambulatory surgery, and major spine; Reduces Continuous infusions up to 3 mg/kg/hr have been postoperative pain and opioid consumption shown to be safe Ø Moderate: Breast; Prevention of chronic postsurgical pain Ø Reduce infusion rate in patients with impaired Ø No benefit: Total abdominal hysterectomy, total hip drug metabolism & clearance (i.e.
    [Show full text]
  • Local Anesthetic Toxicity: Prevention and Treatment
    Local Anesthetic Toxicity: Prevention and Treatment John W. Wolfe, M.D. Staff Anesthesiologist Indiana University School of Medicine Indianapolis, Indiana John F. Butterworth, M.D. Chairman, Department of Anesthesia Indiana University School of Medicine Indianapolis, Indiana LESSON OBJECTIVES dine, and the site of injection on peak Upon completion of this lesson, the reader local anesthetic concentrations in blood. should be able to: 6. Describe the mechanism of local anes- 1. List the signs and symptoms of local thetic central nervous system toxicity. anesthetic toxicity. 7. Identify the risk factors for local anes- 2. Discuss the concept of "maximum safe thetic toxicity. doses of a local anesthetic." 8. Plan the treatment of local anesthetic- 3. Describe methods for reducing the risk of induced cardiac arrhythmias and cardiac local anesthetic toxicity. arrest. 4. Explain the treatment of local anes- 9. Describe the mechanism of local anes- thetic-related neurologic symptoms and thetic cardiovascular toxicity. toxic side effects. 10. Explain the dosage and proposed mech- 5. Discuss the effects of epinephrine, cloni- anism of lipid emulsion therapy. Current Reviews for Nurse Anesthetists designates this lesson for 1 CE contact hour in Clinical pharmacology/therapeutics. Introduction Mechanism of Cardiac and central nervous system (CNS) toxic Local Anesthetic Toxicity side effects of local anesthetics are relatively rare but potentially catastrophic complications of local and Local anesthetics normally produce their desired regional anesthesia. Fortunately, the likelihood of a effects on peripheral nerves by binding and inhibit- local anesthetic toxic event can be reduced by ad- ing voltage-gated sodium channels in neural cell herence to good technique.
    [Show full text]
  • Neurochemical Mechanisms Underlying Alcohol Withdrawal
    Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.
    [Show full text]
  • Antagonism of Lidocaine Inhibition by Open-Channel Blockers That Generate Resurgent Na Current
    4976 • The Journal of Neuroscience, March 13, 2013 • 33(11):4976–4987 Cellular/Molecular Antagonism of Lidocaine Inhibition by Open-Channel Blockers That Generate Resurgent Na Current Jason S. Bant,1,3 Teresa K. Aman,2,3 and Indira M. Raman1,2,3 1Interdepartmental Biological Sciences Program, 2Northwestern University Interdepartmental Neuroscience Program, and 3Department of Neurobiology, Northwestern University, Evanston, Illinois 60208 Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous com- pounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibi- tors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neu- rons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the ␤ ␤ cytoplasmic tail of NaV 4 (the 4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the ␤4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block.
    [Show full text]