High-Resolution Crystal Structure of Arthrobacter Aurescens Chondroitin AC Lyase: an Enzyme–Substrate Complex Defines the Catalytic Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

High-Resolution Crystal Structure of Arthrobacter Aurescens Chondroitin AC Lyase: an Enzyme–Substrate Complex Defines the Catalytic Mechanism doi:10.1016/j.jmb.2003.12.071 J. Mol. Biol. (2004) 337, 367–386 High-resolution Crystal Structure of Arthrobacter aurescens Chondroitin AC Lyase: An Enzyme–Substrate Complex Defines the Catalytic Mechanism Vladimir V. Lunin1, Yunge Li1, Robert J. Linhardt2, Hirofumi Miyazono3 Mamoru Kyogashima3, Takuji Kaneko3, Alexander W. Bell4 and Miroslaw Cygler1* 1Biotechnology Research Chondroitin lyases (EC 4.2.2.4 and EC 4.2.2.5) are glycosaminoglycan- Institute, National Research degrading enzymes that act as eliminases. Chondroitin lyase AC from Council of Canada, and Arthrobacter aurescens (ArthroAC) is known to act on chondroitin 4-sulfate Montre´al Joint Centre for and chondroitin 6-sulfate but not on dermatan sulfate. Like other chon- Structural Biology, Montre´al droitin AC lyases, it is capable of cleaving hyaluronan. Que´bec, 6100 Royalmount Ave. We have determined the three-dimensional crystal structure of Montre´al, Que´bec, Canada ArthroAC in its native form as well as in complex with its substrates H4P 2R2 (chondroitin 4-sulfate tetrasaccharide, CStetra and hyaluronan tetrasacchar- ide) at resolution varying from 1.25 A˚ to 1.9 A˚ . The primary sequence of 2Department of Chemistry ArthroAC has not been previously determined but it was possible to Division of Medicinal determine the amino acid sequence of this enzyme from the high- Chemistry and Department of resolution electron density maps and to confirm it by mass spectrometry. Chemical and Biochemical The enzyme–substrate complexes were obtained by soaking the substrate Engineering, The University of into the crystals for varying lengths of time (30 seconds to ten hours) and Iowa, 115 S. Grand Ave, PHAR flash-cooling the crystals. The electron density map for crystals soaked in S328, Iowa City, IA the substrate for as short as 30 seconds showed the substrate clearly and 52242-1112, USA indicated that the ring of central glucuronic acid assumes a distorted 3Central Research Laboratories boat conformation. This structure strongly supports the lytic mechanism Seikagaku Corporation, Tateno where Tyr242 acts as a general base that abstracts the proton from the C5 3-1253, Higashiyamato-shi position of glucuronic acid while Asn183 and His233 neutralize the charge Tokyo 207-0021, Japan on the glucuronate acidic group. Comparison of this structure with that of 4 chondroitinase AC from Flavobacterium heparinum (FlavoAC) provides an Montre´al Proteomics Network explanation for the exolytic and endolytic mode of action of ArthroAC 740 Dr Penfield Ave., Montre´al and FlavoAC, respectively. Que´bec, Canada H3A 1A4 Crown Copyright q 2004 Published by Elsevier Ltd. All rights reserved. Keywords: chondroitin lyase; chondroitinase AC; Arthrobacter aurescens; *Corresponding author substrate binding; catalytic mechanism Introduction ides, composed of disaccharide repeating units of a substituted glucosamine or galactosamine Glycosaminoglycans (GAGs) are the carbo- attached through (1,4) linkage to a uronic acid hydrate components of proteoglycans, which are molecule. These disaccharide units are linked (1,3) a major component of the extracellular matrix.1 or (1,4) into a polysaccharide chain.2 The glucosa- They are highly negatively charged polysacchar- mine/galactosamine units are sulfated extensively, and their synthesis requires the concerted action of a large number of enzymes.3,4 Supplementary data associated with this article can be Glycosaminoglycans are degraded enzymatically found at doi: 10.1016/j.jmb.2003.12.071 5 Abbreviations used: GAG, glycosaminoglycan; MS, by two types of enzymes, hydrolases and lyases. mass spectrometry. Hydrolases catalyze cleavage of the glycosyl- E-mail address of the corresponding author: oxygen bond by addition of water, producing [email protected] a saturated disaccharide. Lyases cleave the 0022-2836/$ - see front matter Crown Copyright q 2004 Published by Elsevier Ltd. All rights reserved. 368 Chondroitinase AC Crystal Structure and Mechanism oxygen–aglycone linkage through proton abstrac- as the complexes with chondroitin tetrasaccharide tion, producing an unsaturated disaccharide pro- (DUAp (1 ! 3)-b-D-GalpNAc4S (1 ! 4)-b-D-GlcAp duct with a double bond between C4 and C5. The (1 ! 3)-a,b-D-GalpNAc4S, where DUAp is the enzymatic mechanisms of hydrolases are well unsaturated sugar residue, 4-deoxy-a-L-threo-hex- understood and reactions proceed either according 4-enopyranosyluronic acid; GlcAp, glucopyrano- to the retaining or inverting mechanism.6 On the syluronic acid; GalpN, 2-deoxy-2-aminogalacto- other hand, the molecular details of the enzymatic pyranose; S, sulfate; and Ac, acetate) and mechanism of GAG lyases are still poorly under- hyaluronan tetrasaccharide substrates. stood. A chemically plausible mechanism for the b Despite the purification and characterization of elimination reaction has been proposed;7 however, ArthroAC many years ago13,17,18 and its extensive the constitution of the active site and the roles of use as an analytical tool in glycosaminoglycan individual amino acids are not clear. A number of analysis, this enzyme has not been cloned and its bacterial species synthesize GAG lyases, enzymes amino acid sequence has not been determined, used to degrade and utilize glycosaminoglycans although its amino acid composition and carbo- as a source of carbon in the bacterium’s natural hydrate content were reported.18 We obtained environment.5,8 Polysaccharide lyases with known crystals that diffract up to 1.25 A˚ resolution. The three-dimensional structures fall into two architec- high-resolution data led to high-quality electron tures: the right-handed parallel b-helix (pectate/ density maps of native enzyme and several com- pectin lyases, chondroitinase B, rhamnoglucuronan plexes, and allowed us to deduce confidently the lyase) and (a/a)n toroid (n ¼ 5 for Flavobacterium amino acid sequence for 99% of the amino acid heparinum chondroitin AC and chondroitin ABC residues and to propose the molecular details of lyases, bacterial hyaluronate lyases, xanthan lyase, the catalytic mechanism, which is common to and n ¼ 6 for alginate lyases). A catalytic mechan- FlavoAC and hyaluronate lyases. Here, we follow ism has been proposed for pectate lyases, Ca2þ- the nomenclature introduced by Davies et al.19 and dependent enzymes,9 but it remains to be seen if it designate the sugars on the reducing end of the applies to other lyases having the b-helix topology. break with a þ sign and the sugars on the non- Several plausible mechanisms have been proposed reducing end with a 2 sign. In this nomenclature, for the lyases with the (a/a)5 toroidal fold with the enzymes break the bond between sugars 21 a histidine or a tyrosine residue in the role of a and þ1, the latter being an uronic acid. general base abstracting the proton from the C5 atom of glucuronic acid, and a tyrosine or an argin- ine residue acting as a general acid donating a pro- Results and Discussion ton to the bridging O4 atom.10,11 However, there is insufficient evidence to indicate which of these Amino acid sequence and its conservation proposed mechanisms is utilized by the enzymes. The nature of the group presumed to be necessary The molecular mass of the entire molecule was to neutralize the charge of the glucuronic acid measured by ion spray mass spectrometry. Two carboxylic group is not clear, since these enzymes species were present with molecular masses of do not require Ca2þ and there is no positively 79,502 Da and 79,840 Da. The greater mass corre- charged group in the vicinity of the uronic acid, as sponds well to the molecular mass of 79,785 Da expected from the accepted chemical mechanism.7 (average mass) calculated from the amino acid Glycosaminoglycan-degrading enzymes with sequence. Based on the analysis of MS/MS spectra, defined specificity have found widespread appli- we believe that the smaller mass corresponds to cations as analytical tools for the analysis of the the fragment missing three N-terminal amino acid structure of glycosaminoglycans and other poly- residues. Such a good agreement between the pre- saccharides.12 Chondroitin AC lyases are used fre- dicted and measured molecular mass indicated quently for this purpose. These enzymes cleave that (1) no major assignment errors were made the glycosidic bond on the non-reducing end of an and (2) no glycosylation or other modification uronic acid and use as a substrate either chondroi- were present (FlavoAC is glycosylated).16 tin 4-sulfate or chondroitin 6-sulfate but not Peptides extracted from an in-gel trypsin digest dermatan sulfate. They display a varied degree of purified A. aurescens chondroitin AC lyase were of activity toward hyaluronan.13 Enzymes from analyzed by LC-QToF mass spectrometry as two sources, chondroitin AC lyase from Arthrobacter described in Materials and Methods. The resulting aurescens (ArthroAC) and from F. heparinum peaklist of fragmentation spectra was matched in- (FlavoAC), are commercially available (Seikagaku house against the sequence deduced from the crys- Corporation) and used frequently. The latter tal structure employing Mascot (MatrixScience) enzyme has been cloned and overexpressed in software.20 Matched tandem MS spectra were con- F. heparinum14 and in Escherichia coli.15 We pre- firmed manually and the remaining spectra were viously determined the three-dimensional struc- interpreted manually. This process was repeated ture of this enzyme on its own16 and in complex several times, using the two sets of experimental with several dermatan sulfate oligosaccharides.10 data iteratively to determine the optimal sequence Here, we present the three-dimensional structure of the lyase (Supplementary Material). of chondroitin AC lyase from A. aurescens as well The results of MS/MS analysis of 202 tandem Chondroitinase AC Crystal Structure and Mechanism 369 mass spectra covering 88.5% of the entire lyase 1F1S22 and Bacillus sp. xanthan lyase 1J0M.23 ArthroAC sequence (see Materials and Methods) Structure-based alignment of their sequences is confirmed the amino acid sequence identified shown in Figure 1. The residues important for the from electron density maps.
Recommended publications
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • The Crystal Structure of Novel Chondroitin Lyase ODV-E66, A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 587 (2013) 3943–3948 journal homepage: www.FEBSLetters.org The crystal structure of novel chondroitin lyase ODV-E66, a baculovirus envelope protein ⇑ Yoshirou Kawaguchi a, Nobuo Sugiura b, Koji Kimata c, Makoto Kimura a,d, Yoshimitsu Kakuta a,d, a Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan b Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan c Research Complex for the Medicine Frontiers, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan d Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan article info abstract Article history: Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Received 5 August 2013 Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroi- Revised 1 October 2013 tin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteris- Accepted 15 October 2013 tics reflecting the life cycle of baculovirus. To understand ODV-E66’s structural basis, the crystal Available online 26 October 2013 structure was determined and it was found that the structural fold resembled that of polysaccharide Edited by Christian Griesinger lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discus- sion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.
    [Show full text]
  • Manual D'estil Per a Les Ciències De Laboratori Clínic
    MANUAL D’ESTIL PER A LES CIÈNCIES DE LABORATORI CLÍNIC Segona edició Preparada per: XAVIER FUENTES I ARDERIU JAUME MIRÓ I BALAGUÉ JOAN NICOLAU I COSTA Barcelona, 14 d’octubre de 2011 1 Índex Pròleg Introducció 1 Criteris generals de redacció 1.1 Llenguatge no discriminatori per raó de sexe 1.2 Llenguatge no discriminatori per raó de titulació o d’àmbit professional 1.3 Llenguatge no discriminatori per raó d'ètnia 2 Criteris gramaticals 2.1 Criteris sintàctics 2.1.1 Les conjuncions 2.2 Criteris morfològics 2.2.1 Els articles 2.2.2 Els pronoms 2.2.3 Els noms comuns 2.2.4 Els noms propis 2.2.4.1 Els antropònims 2.2.4.2 Els noms de les espècies biològiques 2.2.4.3 Els topònims 2.2.4.4 Les marques registrades i els noms comercials 2.2.5 Els adjectius 2.2.6 El nombre 2.2.7 El gènere 2.2.8 Els verbs 2.2.8.1 Les formes perifràstiques 2.2.8.2 L’ús dels infinitius ser i ésser 2.2.8.3 Els verbs fer, realitzar i efectuar 2.2.8.4 Les formes i l’ús del gerundi 2.2.8.5 L'ús del verb haver 2.2.8.6 Els verbs haver i caldre 2.2.8.7 La forma es i se davant dels verbs 2.2.9 Els adverbis 2.2.10 Les locucions 2.2.11 Les preposicions 2.2.12 Els prefixos 2.2.13 Els sufixos 2.2.14 Els signes de puntuació i altres signes ortogràfics auxiliars 2.2.14.1 La coma 2.2.14.2 El punt i coma 2.2.14.3 El punt 2.2.14.4 Els dos punts 2.2.14.5 Els punts suspensius 2.2.14.6 El guionet 2.2.14.7 El guió 2.2.14.8 El punt i guió 2.2.14.9 L’apòstrof 2.2.14.10 L’interrogant 2 2.2.14.11 L’exclamació 2.2.14.12 Les cometes 2.2.14.13 Els parèntesis 2.2.14.14 Els claudàtors 2.2.14.15
    [Show full text]
  • Active Site of Chondroitin AC Lyase Revealed by the Structure Of
    Biochemistry 2001, 40, 2359-2372 2359 Active Site of Chondroitin AC Lyase Revealed by the Structure of Enzyme-Oligosaccharide Complexes and Mutagenesis†,‡ Weijun Huang,§ Lorena Boju,§ Lydia Tkalec,|,⊥ Hongsheng Su,|,# Hyun-Ok Yang,3 Nur Sibel Gunay,3 Robert J. Linhardt,3 Yeong Shik Kim,O Allan Matte,§ and Miroslaw Cygler*,§ Biotechnology Research Institute, 6100 Royalmount AVenue, Montre´al, Que´bec H4P 2R2 Canada, Montreal Joint Centre for Structural Biology, Montre´al, Que´bec, Canada, IBEX Technologies Inc., 5485 Pare Street, Montre´al, Que´bec H4P 1P7 Canada, Department of Chemistry, DiVision of Medicinal Chemistry and Department of Chemical and Biochemical Engineering, The UniVersity of Iowa, 115 South Grand AVenue, PHAR S328, Iowa City, Iowa 52242-1112, and Natural Products Research Institute, Seoul National UniVersity, Seoul 110-460, Korea ReceiVed October 17, 2000; ReVised Manuscript ReceiVed December 18, 2000 ABSTRACT: The crystal structures of FlaVobacterium heparinium chondroitin AC lyase (chondroitinase AC; EC 4.2.2.5) bound to dermatan sulfate hexasaccharide (DShexa), tetrasaccharide (DStetra), and hyaluronic acid tetrasaccharide (HAtetra) have been refined at 2.0, 2.0, and 2.1 Å resolution, respectively. The structure of the Tyr234Phe mutant of AC lyase bound to a chondroitin sulfate tetrasaccharide (CStetra) has also been determined to 2.3 Å resolution. For each of these complexes, four (DShexa and CStetra) or two (DStetra and HAtetra) ordered sugars are visible in electron density maps. The lyase AC DShexa and CStetra complexes reveal binding at four subsites, -2, -1, +1, and +2, within a narrow and shallow protein channel. We suggest that subsites -2 and -1 together represent the substrate recognition area, +1 is the catalytic subsite and +1 and +2 together represent the product release area.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials OH 8 H H8 H C N OH 3 7 3 2 4 H1 1 5 O H4 O 6 H6’ H3 OH H6 H1’ H2 H5 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 ppm 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 ppm Figure S1. 1D 1H spectrum of 1-dglcnac and signal assignments ppm 2.0 H8 2.5 OH 8 H H C N OH 3 7 3 2 4 3.0 1 5 H1 O H5 O 6 H4 H3 OH 3.5 H6 H2 H6’ H1’ 4.0 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S2. 1H-1H TOCSY 2D NMR spectra for 1-dglcnac and signal assignments ppm 3.0 H1 3.2 H5 H4 3.4 H3 3.6 H6 H6’ H2 3.8 H1’ 4.0 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 ppm Figure S3. 1H-1H COSY 2D NMR spectra for 1-dglcnac and signal assignment ppm -0.02 -0.01 0.00 0.01 0.02 H1’ H6’ H2 H6 H3 H4 H5 H1 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ppm Figure S4. 1H-1H JRES 2D NMR spectra for 1-dglcnac and signal assignments ppm 20 C8(22.9) 40 OH 8 H H C N OH C2(53.2) 3 7 3 2 4 60 1 5 C6(63.2) C6(63.2) O 6 C1(69.2) C1(69.2) O C4(72.6) C3(77.0) OH 80 C5(82.7) 100 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S5.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • Functional Domain Motions and Processivity in Bacterial Hyaluronate Lyase: a Molecular Dynamics Study
    Functional Domain Motions and Processivity in Bacterial Hyaluronate Lyase: A Molecular Dynamics study Dissertation Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨aten der Georg-August-Universit¨at zu G¨ottingen Vorgelegt von Harshad Joshi aus Pune, Indien G¨ottingen, 2007 D7 Referent: Prof. Dr. Tim Salditt Korreferent: PD Dr. Helmut Grubmuller¨ Tag der mundlichen¨ Prufung:¨ To my parents and teachers Great things can be achieved by putting small things together. Just like a rope made of grass can be used to tie down a massive mad elephant. (In the hope that this thesis contributes in better understanding of the mother nature.) Contents 0 Prologue xi 0.1 Scope of the thesis . xiii 0.2 Outlineofthethesis .............................. xvi 1 Theory and Methods 1 1.1 Molecular Dynamics simulations - Principle . 3 1.1.1 From Schr¨odinger equation to Molecular Dynamics . 4 1.2 MD simulations in practice . 9 1.2.1 Integration method and time step . 9 1.2.2 Solvent environment . 10 1.2.3 System boundaries . 11 1.2.4 Temperature and pressure coupling . 12 1.2.5 Improving efficiency . 14 1.2.6 Minimisation and equilibration . 16 1.3 Analysis methods . 17 1.3.1 Principal Component Analysis . 17 2 Processivity and Hyaluronidases 21 2.1 Processive Enzymes . 23 2.2 Hyaluronidases . 25 2.2.1 History and physiological importance . 26 2.2.2 Classification of Hyaluronidases and Spn.Hyaluronate Lyase . 27 2.3 Streptococcus Pneumoniae Hyaluronidase (Spn.Hyal) . 28 2.3.1 Choice of Spn.Hyal for processivity study . 29 2.3.2 Structure of Spn.Hyal and its catalytic mechanism .
    [Show full text]
  • Discovery of High Affinity Receptors for Dityrosine Through Inverse Virtual Screening and Docking and Molecular Dynamics
    Article Discovery of High Affinity Receptors for Dityrosine through Inverse Virtual Screening and Docking and Molecular Dynamics Fangfang Wang 1,*,†, Wei Yang 2,3,† and Xiaojun Hu 1,* 1 School of Life Science, Linyi University, Linyi 276000, China; [email protected] 2 Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia, [email protected] 3 Arieh Warshel Institute of Computational Biology, the Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen 518000, China * Corresponding author: [email protected] † These authors contributed equally to this work. Received: 09 December 2018; Accepted: 23 December 2018; Published: date Table S1. Docking affinity scores for cis-dityrosine binding to binding proteins. Target name PDB/UniProtKB Type Affinity (kcal/mol) Galectin-1 1A78/P56217 Lectin -6.2±0.0 Annexin III 1AXN/P12429 Calcium/phospholipid Binding Protein -7.5±0.0 Calmodulin 1CTR/P62158 Calcium Binding Protein -5.8±0.0 Seminal Plasma Protein Pdc-109 1H8P/P02784 Phosphorylcholine Binding Protein -6.6±0.0 Annexin V 1HAK/P08758 Calcium/phospholipid Binding -7.4±0.0 Alpha 1 antitrypsin 1HP7/P01009 Protein Binding -7.6±0.0 Histidine-Binding Protein 1HSL/P0AEU0 Binding Protein -6.3±0.0 Intestinal Fatty Acid Binding Protein 1ICN/P02693 Binding Protein(fatty Acid) -9.1±0.0* Migration Inhibitory Factor-Related Protein 14 1IRJ/P06702 Metal Binding Protein -7.0±0.0 Lysine-, Arginine-, Ornithine-Binding Protein 1LST/P02911 Amino Acid Binding Protein -6.5±0.0
    [Show full text]
  • Similar Structures to the E-To-H Helix Unit in the Globin-Like Fold Are Found in Other Helical Folds
    Biomolecules 2014, 4, 268-288; doi:10.3390/biom4010268 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Similar Structures to the E-to-H Helix Unit in the Globin-Like Fold are Found in Other Helical Folds Masanari Matsuoka 1,2, Aoi Fujita 1, Yosuke Kawai 1,† and Takeshi Kikuchi 1,* 1 Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; E-Mails: [email protected] (M.M.); [email protected] (A.F.); [email protected] (Y.K.) 2 Japan Society for the Promotion of Science (JSPS), Ichibancho, Chiyoda-ku, Tokyo 102-8471, Japan † Present address: Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8575, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-77-561-5909; Fax: +81-77-561-5203. Received: 6 December 2013; in revised form: 11 February 2014 / Accepted: 13 February 2014 / Published: 27 February 2014 Abstract: A protein in the globin-like fold contains six alpha-helices, A, B, E, F, G and H. Among them, the E-to-H helix unit (E, F, G and H helices) forms a compact structure. In this study, we searched similar structures to the E-to-H helix of leghomoglobin in the whole protein structure space using the Dali program. Several similar structures were found in other helical folds, such as KaiA/RbsU domain and Type III secretion system domain. These observations suggest that the E-to-H helix unit may be a common subunit in the whole protein 3D structure space.
    [Show full text]