UC San Diego UC San Diego Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Comparative Systems Biology Analysis of Microbial Pathogens Permalink https://escholarship.org/uc/item/0qn486q4 Author Monk, Jonathan Mayock Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Comparative Systems Biology Analysis of Microbial Pathogens A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical Engineering by Jonathan Mayock Monk Committee in charge: Professor Bernhard Ø. Palsson, Chair Professor Michael Heller, Co-Chair Professor Guarav Arya Professor Victor Nizet Professor Milton Saier 2015 Copyright Jonathan Mayock Monk, 2015 All rights reserved Signature Page The dissertation of Jonathan Mayock Monk is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co- Chair Chair University of California, San Diego 2015 iii DEDICATION Dedication This work is dedicated to my parents, for the love and support they have given me that has enabled me to achieve this milestone. iv EPIGRAPH Epigraph The true delight is in the finding out rather than in the knowing. - Isaac Asimov v TABLE OF CONTENTS Table of Contents Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Epigraph .......................................................................................................................... v Table of Contents ........................................................................................................... vi List of Figures ............................................................................................................... xvi List of Tables ............................................................................................................... xviii Acknowledgements ...................................................................................................... xix Vita .............................................................................................................................. xxiii Abstract of the Dissertation ..........................................................................................xxvi Chapter 1 Using Genome-Scale Models to Predict Biological Capabilities ...................... 1 1.1 Introduction ........................................................................................................... 2 1.2 A network reconstruction is the systematic assembly of knowledge ...................... 4 1.3 Converting a genome-scale reconstruction to a computational model. .................. 5 1.3.1 What is needed to create a new cell? ............................................................. 8 1.4 Validation and reconciliation of qualitative model predictions ...............................10 1.4.1 Genetic and environmental parameters .........................................................11 1.4.2 Classification of model predictions .................................................................12 1.4.3 Discovering new metabolic capabilities using model false negatives. ............13 vi 1.4.4 Adaptive laboratory evolution can be used as a part of the discovery process. ...............................................................................................................................15 1.5 Quantitative phenotype prediction through optimality principles ...........................17 1.5.1 Workflow for quantitative phenotype prediction. .............................................18 1.5.2 Flux variability analysis (FVA) calculates possible flux states. .......................19 1.5.3 Types of possible (evolutionarily optimal) quantitative predictions. ................20 1.5.4 From optimality principles to prospective design ............................................22 1.6 Multi-omic data integration: constraining and exploring possible phenotypic states ..................................................................................................................................23 1.6.1 Workflow for multi-omic data integration. .......................................................24 1.6.2 Converting data to model constraints. ............................................................24 1.6.3 Cell-type and condition-specific models .........................................................25 1.6.4 Quantifying uncertainty with Flux variability analysis (FVA) and Sampling. ....25 1.6.5 Using computed states to drive discovery and experimentation. ....................26 1.7 Moving beyond metabolism to molecular biology .................................................27 1.7.1 Computing properties of the proteome. ..........................................................28 1.7.2 GEM-PRO -- A structural biology view of cellular networks ............................28 1.7.3 Modeling molecular biology and metabolism with ME-Models. ......................29 1.8 Perspective ..........................................................................................................32 1.9 Acknowledgments ................................................................................................33 vii Chapter 2 Comparative Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments ................... 45 2.1 Abstract ................................................................................................................46 2.2 Introduction ..........................................................................................................46 2.3 Results .................................................................................................................48 2.3.1 Characteristics of E. coli core and pan metabolic content ..............................48 2.3.2 The ability to catabolize different nutrient sources distinguishes metabolic models of E. coli strains ..........................................................................................50 2.3.3 A set of substrates differentiate pathogenic strains from commensal (non- pathogenic) strains .................................................................................................51 2.3.4 Metabolic models combined with gap-filling methods facilitate investigation into the genetic basis of strain-specific auxotrophies ..............................................53 2.3.5 Experimental validation of unique nutrients shows high model accuracy .......54 2.4 Discussion ...........................................................................................................56 2.5 Materials and Methods .........................................................................................60 2.5.1 Strain specific model reconstruction ..............................................................60 2.5.2 Gap Filling .....................................................................................................61 2.5.3 In silico growth simulations ............................................................................62 2.5.4 Heatmap and phylogenetic tree construction .................................................62 2.5.5 Decision tree construction .............................................................................63 2.5.6 Strains ...........................................................................................................63 viii 2.5.7 Carbon source testing ....................................................................................63 2.6 Acknowledgements ..............................................................................................65 Chapter 3 Comparative genome-scale modelling of multiple S. aureus strains identifies strain-specific pathogenic characteristics and unique metabolic capabilities .................. 73 3.1 Abstract ................................................................................................................74 3.2 Background ..........................................................................................................75 3.3 Results .................................................................................................................78 3.3.1 Building an initial reconstruction of S. aureus as a species ............................78 3.3.2 Characteristics of the S. aureus core and pan-genomes ................................79 3.3.3 Analysis of atypical S. aureus genes .............................................................81 3.3.4 Characteristics of S. aureus core and pan metabolic content.........................82 3.3.5 Determining strain-specific auxotrophies .......................................................83 3.3.6 Calculating alternative nutrient sources .........................................................85 3.3.7 Prediction of essential metabolic genes .........................................................86 3.3.8 S. aureus strains share a core set of ubiquitous genes encoding proteins involved in transcription and translation ..................................................................86 3.3.9 Construction of a virulome for the S. aureus species .....................................88 3.4 Discussion ...........................................................................................................90
Recommended publications
  • September 2014
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 439 September 2014 Society Meetings HIGHEST HONOUR FOR UK and Events MATHEMATICAN Professor Martin Hairer, FRS, 2014 University of Warwick, has become the ninth UK based Saturday mathematician to win the 6 September prestigious Fields Medal over Mathematics and the its 80 year history. The medal First World War recipients were announced Meeting, London on Wednesday 13 August in page 15 a ceremony at the four-year- ly International Congress for 1 Wednesday Mathematicians, which on this 24 September occasion was held in Seoul, South Korea. LMS Popular Lectures See page 4 for the full report. Birmingham page 12 Friday LMS ANNOUNCES SIMON TAVARÉ 14 November AS PRESIDENT-DESIGNATE LMS AGM © The University of Cambridge take over from the London current President, Professor Terry Wednesday Lyons, FRS, in 17 December November 2015. SW & South Wales Professor Tavaré is Meeting a versatile math- Plymouth ematician who has established a distinguished in- ternational career culminating in his current role as The London Mathematical Director of the Cancer Research Society is pleased to announce UK Cambridge Institute and Professor Simon Tavaré, Professor in DAMTP, where he NEWSLETTER FRS, FMedSci, University of brings his understanding of sto- ONLINE: Cambridge, as President-Des- chastic processes and expertise newsletter.lms.ac.uk ignate. Professor Tavaré will in the data science of DNA se- (Cont'd on page 3) LMS NEWSLETTER http://newsletter.lms.ac.uk Contents No. 439 September 2014 15 44 Awards Partial Differential Equations..........................37 Collingwood Memorial Prize..........................11 Valediction to Jeremy Gray..............................33 Calendar of Events.......................................50 News LMS Items European News.................................................16 HEA STEM Strategic Project...........................
    [Show full text]
  • The Eagle 2013 the EAGLE
    VOLUME 95 FOR MEMBERS OF ST JOHN’S COLLEGE The Eagle 2013 THE EAGLE Published in the United Kingdom in 2013 by St John’s College, Cambridge St John’s College Cambridge CB2 1TP johnian.joh.cam.ac.uk Telephone: 01223 338700 Fax: 01223 338727 Email: [email protected] Registered charity number 1137428 First published in the United Kingdom in 1858 by St John’s College, Cambridge Designed by Cameron Design (01284 725292, www.designcam.co.uk) Printed by Fisherprint (01733 341444, www.fisherprint.co.uk) Front cover: Divinity School by Ben Lister (www.benlister.com) The Eagle is published annually by St John’s College, Cambridge, and is sent free of charge to members of St John’s College and other interested parties. Page 2 www.joh.cam.ac.uk CONTENTS & MESSAGES CONTENTS & MESSAGES THE EAGLE Contents CONTENTS & MESSAGES Photography: John Kingsnorth Page 4 johnian.joh.cam.ac.uk Contents & messages THE EAGLE CONTENTS CONTENTS & MESSAGES Editorial..................................................................................................... 9 Message from the Master .......................................................................... 10 Articles Maggie Hartley: The best nursing job in the world ................................ 17 Esther-Miriam Wagner: Research at St John’s: A shared passion for learning......................................................................................... 20 Peter Leng: Living history .................................................................... 26 Frank Salmon: The conversion of Divinity
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • The Crystal Structure of Novel Chondroitin Lyase ODV-E66, A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 587 (2013) 3943–3948 journal homepage: www.FEBSLetters.org The crystal structure of novel chondroitin lyase ODV-E66, a baculovirus envelope protein ⇑ Yoshirou Kawaguchi a, Nobuo Sugiura b, Koji Kimata c, Makoto Kimura a,d, Yoshimitsu Kakuta a,d, a Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan b Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan c Research Complex for the Medicine Frontiers, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan d Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan article info abstract Article history: Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Received 5 August 2013 Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroi- Revised 1 October 2013 tin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteris- Accepted 15 October 2013 tics reflecting the life cycle of baculovirus. To understand ODV-E66’s structural basis, the crystal Available online 26 October 2013 structure was determined and it was found that the structural fold resembled that of polysaccharide Edited by Christian Griesinger lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discus- sion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.
    [Show full text]
  • Carta Abierta Al Presidente Juan Manuel Santos Y Más De Mil
    Carta abierta al Presidente Juan Manuel Santos Estimado señor Presidente: Los abajo firmantes nos dirigimos a Ud. para solicitarle la libertad inmediata del académico colombiano Dr. Miguel Ángel Bettrén, El Dr. Beltrán ha estado encarcelado desde mayo de 2009 sin que se le haya probado delito alguno. Ha sido acusado de "rebelión" y tildado de terrorista por ei Estado colombiano; sin embargo, no se ha presentado ninguna prueba que respalde esas acusaciones. Nos preocupa seriamente el hecho de que, como tantos otros en Colombia, el Dr. Beltrán haya sido detenido por sus opiniones políticas antes que por algún delito, de que se le haya privado de su libertad con el fin de silenciarte y de amedrentar a quienes como él quisieran expresar oposición. Creemos que la libertad académica y la libertad de expresión son derechos fundamentales, y que son los pilares de una sociedad democrática; pero la actual detención del Dr. Beltrán muestra que en Colombia no se está respetando ni la una ni la otra. Por lo tanto, le instamos a que ordene su libertad inmediata. Ei alto número de presos políticos en las cárceles colombianas - sean académicos, sindicalistas, dirigentes comunitarios u otros activistas de la sociedad civil • desmiente las declaraciones de que el Estado colombiano respeta los derechos humanos. >1 Le instamos a que ponga fin inmediato a esta situación vergonzosa. Atentamente, Professor Sir Richard Roberts, Nobel Prize Winner Professor Sir John Bali, Sedleian Professor of Natural Philosophy, University of Oxford Professor Dame Janet Nelson,
    [Show full text]
  • Advance Program Now Available
    Genetic and Evolutionary Computation Conference 2007 Conference Program Table of Contents GECCO is evolving! 1 Program Outline 2 Instructions for Paper and Poster Presenters 3 Organizers 4 Program Committee 6 Papers Nominated for Best Paper Awards 11 Human-Competitive Results Awards 14 Evolutionary Computation in Practice 15 Competitions 15 Tutorials and Workshops Schedule 16 Paper Presentation Sessions At-A-Glance 18 Monday Paper and Poster Presentations 20 Monday Keynote Debate 36 Tuesday Paper and Poster Presentations 40 Wednesday Paper Presentations 58 ACM and SIGEVO Membership 71 UCL Campus Maps and Directions 73—74 GECCO is sponsored by the Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO). SIG Services: 2 Penn Plaza, Suite 701, New York, NY, 10121, USA, 1-800-342-6626 (USA and Canada) or +212-626-0500 (Global). gc-cfp-wm-07x1 8 November 06 Sponsor and Supporters We gratefully acknowledge and thank our Supporters. ACM SIGEVO Association for Computing Machinery GECCO 2007 is Special Interest Group on Sponsored By: Genetic and Evolutionary Computation Conference Venue University College London Supporter: The Science Department Keynote Supporter: Of the Natural History Museum Competition Quantdesk Ltd Supporter: Student Travel Grant Supporters Tiger Mountain Scientific, Inc. GECCO is evolving! Welcome to GECCO 2007! I would like to take this opportunity to welcome you, thank all those who have participated to create the current GECCO, and tell you what’s new this year. This year represents a major transition in GECCO’s evolution. There has been a growing view that for GECCO to maintain its place as the leading conference in the field of evolutionary computation it should globalize and be held also outside the United States.
    [Show full text]
  • Manual D'estil Per a Les Ciències De Laboratori Clínic
    MANUAL D’ESTIL PER A LES CIÈNCIES DE LABORATORI CLÍNIC Segona edició Preparada per: XAVIER FUENTES I ARDERIU JAUME MIRÓ I BALAGUÉ JOAN NICOLAU I COSTA Barcelona, 14 d’octubre de 2011 1 Índex Pròleg Introducció 1 Criteris generals de redacció 1.1 Llenguatge no discriminatori per raó de sexe 1.2 Llenguatge no discriminatori per raó de titulació o d’àmbit professional 1.3 Llenguatge no discriminatori per raó d'ètnia 2 Criteris gramaticals 2.1 Criteris sintàctics 2.1.1 Les conjuncions 2.2 Criteris morfològics 2.2.1 Els articles 2.2.2 Els pronoms 2.2.3 Els noms comuns 2.2.4 Els noms propis 2.2.4.1 Els antropònims 2.2.4.2 Els noms de les espècies biològiques 2.2.4.3 Els topònims 2.2.4.4 Les marques registrades i els noms comercials 2.2.5 Els adjectius 2.2.6 El nombre 2.2.7 El gènere 2.2.8 Els verbs 2.2.8.1 Les formes perifràstiques 2.2.8.2 L’ús dels infinitius ser i ésser 2.2.8.3 Els verbs fer, realitzar i efectuar 2.2.8.4 Les formes i l’ús del gerundi 2.2.8.5 L'ús del verb haver 2.2.8.6 Els verbs haver i caldre 2.2.8.7 La forma es i se davant dels verbs 2.2.9 Els adverbis 2.2.10 Les locucions 2.2.11 Les preposicions 2.2.12 Els prefixos 2.2.13 Els sufixos 2.2.14 Els signes de puntuació i altres signes ortogràfics auxiliars 2.2.14.1 La coma 2.2.14.2 El punt i coma 2.2.14.3 El punt 2.2.14.4 Els dos punts 2.2.14.5 Els punts suspensius 2.2.14.6 El guionet 2.2.14.7 El guió 2.2.14.8 El punt i guió 2.2.14.9 L’apòstrof 2.2.14.10 L’interrogant 2 2.2.14.11 L’exclamació 2.2.14.12 Les cometes 2.2.14.13 Els parèntesis 2.2.14.14 Els claudàtors 2.2.14.15
    [Show full text]
  • Active Site of Chondroitin AC Lyase Revealed by the Structure Of
    Biochemistry 2001, 40, 2359-2372 2359 Active Site of Chondroitin AC Lyase Revealed by the Structure of Enzyme-Oligosaccharide Complexes and Mutagenesis†,‡ Weijun Huang,§ Lorena Boju,§ Lydia Tkalec,|,⊥ Hongsheng Su,|,# Hyun-Ok Yang,3 Nur Sibel Gunay,3 Robert J. Linhardt,3 Yeong Shik Kim,O Allan Matte,§ and Miroslaw Cygler*,§ Biotechnology Research Institute, 6100 Royalmount AVenue, Montre´al, Que´bec H4P 2R2 Canada, Montreal Joint Centre for Structural Biology, Montre´al, Que´bec, Canada, IBEX Technologies Inc., 5485 Pare Street, Montre´al, Que´bec H4P 1P7 Canada, Department of Chemistry, DiVision of Medicinal Chemistry and Department of Chemical and Biochemical Engineering, The UniVersity of Iowa, 115 South Grand AVenue, PHAR S328, Iowa City, Iowa 52242-1112, and Natural Products Research Institute, Seoul National UniVersity, Seoul 110-460, Korea ReceiVed October 17, 2000; ReVised Manuscript ReceiVed December 18, 2000 ABSTRACT: The crystal structures of FlaVobacterium heparinium chondroitin AC lyase (chondroitinase AC; EC 4.2.2.5) bound to dermatan sulfate hexasaccharide (DShexa), tetrasaccharide (DStetra), and hyaluronic acid tetrasaccharide (HAtetra) have been refined at 2.0, 2.0, and 2.1 Å resolution, respectively. The structure of the Tyr234Phe mutant of AC lyase bound to a chondroitin sulfate tetrasaccharide (CStetra) has also been determined to 2.3 Å resolution. For each of these complexes, four (DShexa and CStetra) or two (DStetra and HAtetra) ordered sugars are visible in electron density maps. The lyase AC DShexa and CStetra complexes reveal binding at four subsites, -2, -1, +1, and +2, within a narrow and shallow protein channel. We suggest that subsites -2 and -1 together represent the substrate recognition area, +1 is the catalytic subsite and +1 and +2 together represent the product release area.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials OH 8 H H8 H C N OH 3 7 3 2 4 H1 1 5 O H4 O 6 H6’ H3 OH H6 H1’ H2 H5 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 ppm 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 ppm Figure S1. 1D 1H spectrum of 1-dglcnac and signal assignments ppm 2.0 H8 2.5 OH 8 H H C N OH 3 7 3 2 4 3.0 1 5 H1 O H5 O 6 H4 H3 OH 3.5 H6 H2 H6’ H1’ 4.0 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S2. 1H-1H TOCSY 2D NMR spectra for 1-dglcnac and signal assignments ppm 3.0 H1 3.2 H5 H4 3.4 H3 3.6 H6 H6’ H2 3.8 H1’ 4.0 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 ppm Figure S3. 1H-1H COSY 2D NMR spectra for 1-dglcnac and signal assignment ppm -0.02 -0.01 0.00 0.01 0.02 H1’ H6’ H2 H6 H3 H4 H5 H1 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ppm Figure S4. 1H-1H JRES 2D NMR spectra for 1-dglcnac and signal assignments ppm 20 C8(22.9) 40 OH 8 H H C N OH C2(53.2) 3 7 3 2 4 60 1 5 C6(63.2) C6(63.2) O 6 C1(69.2) C1(69.2) O C4(72.6) C3(77.0) OH 80 C5(82.7) 100 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S5.
    [Show full text]