<<

E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

Influence of three surface condensers connection setup on power plant unit performance

Ewa Dobkiewicz-Wieczorek1,* 1 Silesian University of Technology / Valmet Automation, [email protected], Poland

Abstract. This paper presents a comparison of three surface condenser connection setups on the cooling water side. Serial, mixed and parallel connections were considered. The thermodynamic justification for the use of more complex configurations was verified. The analysis was conducted based on the calculated balances of verified power units for nominal and not nominal parameters for tested connections. The exhaust pressure was calculated using the technical data of the surface condenser and cooling water parameters. Three methods of calculating the heat transfer coefficient based on characteristic numbers, HEI method, and the ASME standard, were used. The most advantageous model was indicated and used in heat balance calculations. The assumptions and simplifications for the calculations are discussed. Examples of the calculation results are presented.

The direction of development and transformation in the Polish power industry are a response to the new European 1 Exhaust steam pressure calculation legal regulations, the aim of which is the environmental protection. As a result, diversification of electricity Condensation turbine exhaust steam pressure was production was provoked, additionally coal-fired units calculated using the heat transfer equations. were forced to apply new solutions. New units are getting Model assumed isobaric heat exchange, no condensate greater, technically and technologically more advanced. subcooling. Calculations were made for steady state. Introduced improvement that increases unit efficiency by Thermodynamic calculations in accordance with IAPWS as much as 0.1 percent are important considering the IF-97 [1]. actual requirements and unit efficiency of 45% net. In the case of great unites, when few surface 1.1 Heat transfer equations: condensers are used, it is essential to verify, which Heat transfer equations are: connection setups on the cooling water side would give = ( ) (1) the highest unit efficiency. = ( ) (2) When research, it is necessary to consider the entire ๐‘ ๐‘  ๐‘ ๐‘  ๐‘๐‘ ๐‘„๐‘„ฬ‡ ๐‘š๐‘šฬ‡ ๐‘–๐‘– โˆ’ ๐‘–๐‘– 1 steam-condensate cycle to analyze exhaust steam pressure Nomenclature: โ€“ heat transfer๐‘”๐‘” ๐‘”๐‘” 2rate, 1 โ€“ exhausted ๐‘„๐‘„ฬ‡ ๐‘š๐‘šฬ‡ ๐ถ๐ถ๐ถ๐ถ ๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡ ๐œ‚๐œ‚๐‘๐‘ changes effect on steam flow and thermodynamic steam flow rate, โ€“ exhausted steam enthalpy, ๐‘ ๐‘  parameters fluctuations. The correct calculation of the โ€“ condensate ๐‘„๐‘„enthalฬ‡ py, โ€“ cooling water๐‘š๐‘šฬ‡ flow rate, ๐‘ ๐‘  exhausted steam pressure value is one of key steps to water specific๐‘–๐‘– heat, inlet cooling water ๐‘๐‘ โ€“ ๐‘”๐‘” โ€“ ensure the calculationโ€™s correctness. This paper presents ๐‘–๐‘–temperature, outlet๐‘š๐‘š ฬ‡cooling water temperature, ๐‘”๐‘” โ€“ 1 analysis of three exhausted steam pressure calculation ๐ถ๐ถ๐ถ๐ถโ€“ condenser efficiency ๐‘‡๐‘‡ algorithms, comparison of their complexity and the set of ๐‘‡๐‘‡2 ๐‘๐‘ the data needed for these calculations. The model of the 1.2๐œ‚๐œ‚ Condenser heat load: [2],[4],[5]. surface condenser was based on three methods of calculating the heat transfer coefficient: dimensionless Condenser heat load equation is: equation with characteristic numbers, the HEI method and = (3) the ASME standard. The most advantageous model was =๐‘ ๐‘  (4) indicated after verification with the data from the site. ๐‘„๐‘„ฬ‡ ๐‘ˆ๐‘ˆ๐ด๐ด ๐ฟ๐ฟ๐ฟ๐ฟ๐‘‡๐‘‡2โˆ’๐ฟ๐ฟ๐‘‡๐‘‡๐ฟ๐ฟ1 Study of three surface condenser connection setups on ๐‘‡๐‘‡๐‘๐‘โˆ’๐‘‡๐‘‡1 Nomenclature: โ€“ condenser๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ heat๐‘™๐‘™๐‘™๐‘™ load๐‘‡๐‘‡๐‘ ๐‘ โˆ’๐‘‡๐‘‡,2 U โ€“ heat transfer the cooling water side aims to help to find the answer on coefficient, โ€“ surface tube area, โ€“ logarithmic the rationale behind using more complex configurations, mean temperature๐‘„๐‘„ฬ‡ difference, T โ€“ condensate ๐‘ ๐‘  to analyze their advantages and disadvantages, and to give temperature,๐ด๐ด T โ€“ steam temperature๐ฟ๐ฟ๐ฟ๐ฟ, ๐ฟ๐ฟ๐ฟ๐ฟโ€“ inlet cooling c advice on which system is the best from the water temperature, โ€“ outlet cooling water temperature. s 1 thermodynamics perspective. ๐‘‡๐‘‡ ๐‘‡๐‘‡2

ยฉ The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

1.3 Heat transfer coefficient - Characteristic experimental research. The heat transfer coefficient was numbers [2]. computed as follows = (6) Heat transfer coefficient, when characteristic number Nomenclature: โ€“ uncorrected heat transfer method used, equation is: 1 ๐‘ค๐‘ค ๐‘š๐‘š ๐‘๐‘ coefficients, as a function๐‘ˆ๐‘ˆ of tube๐‘ˆ๐‘ˆ ๐น๐น diameter๐น๐น ๐น๐น and cooling = 10 (5) 1 water velocity, ๐‘ˆ๐‘ˆ โ€“ inlet water temperature correction 1 โˆ’3 ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ factor, โ€“ tube material and gauge correction factors, Tube-Wall resistance๐‘ˆ๐‘ˆ was๐‘…๐‘…๐‘š๐‘š +computed๐‘…๐‘…๐‘ก๐‘ก +๐‘…๐‘…๐‘ ๐‘  +as๐‘…๐‘…๐‘“๐‘“ follows: ๐‘ค๐‘ค ๐ท๐ท๐‘–๐‘– โ€“ cleanliness factor๐น๐น . ๐‘š๐‘š = (5.1) , , ๐น๐น are read from HEI table. values are based ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 1 ๐‘๐‘ Shellside resistance was computed based on on๐น๐น clean, 1.245 mm tube wall gauge, Admiralty metal ๐‘…๐‘…๐‘š๐‘š ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘™๐‘™๐‘™๐‘™ ๐ท๐ท๐‘–๐‘– 2๐พ๐พ๐‘š๐‘š 1 ๐‘ค๐‘ค ๐‘š๐‘š 1 dimensionless equation for heat transfer when the steam ๐‘ˆ๐‘ˆtubes๐น๐น ๐น๐นwith 21.1ยฐC cooling water๐‘ˆ๐‘ˆ temperature. condenses on the outside horizontal pipeโ€™s surface. Uncorrected heat transfer coefficient is describing as a

= ( ) (5.2) function of tube diameter and water velocity. ๐‘ ๐‘  introduces a water temperature correction and ๐‘๐‘๐‘๐‘ ๐พ๐พ โˆ’1 . ๐‘ ๐‘  = 0.725 (5.3) ๐‘…๐‘… ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ introduces a tube material and gauge correction. 0 25 ๐น๐น๐‘ค๐‘ค = ๐‘ฃ๐‘ฃ (5.4) ๐‘๐‘๐‘๐‘ 3 2๐ถ๐ถ 2 ๐‘š๐‘š ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐›ฟ๐›ฟ๐‘๐‘ ๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ 1.5๐น๐น Heat transfer coefficient - ASME PTC 12.2 - The difference in condensate and wall temperatures ๐ถ๐ถ๐‘ฃ๐‘ฃ ๐พ๐พ๐‘ก๐‘ก๐œ‡๐œ‡๐‘๐‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘๐‘๐‘ codes: [5] depends on the thickness of the condensate layer, therefore๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘๐‘๐‘ on the heat transfer coefficient. It is indicating Heat transfer coefficient, when ASME codes used, that the most appropriate calculation method is the equation is: iterative method, but with satisfactory accuracy, the value = 10 (7)

can be calculated as = [3]. 1 โˆ’3 ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘…๐‘…๐‘š๐‘š+๐‘…๐‘…๐‘ก๐‘ก +๐‘…๐‘…๐‘ ๐‘ +๐‘…๐‘…๐‘“๐‘“ Tube-Wall resistance๐‘ˆ๐‘ˆ was computed๐ท๐ท๐‘–๐‘– as follows: Physical properties๐‘๐‘ ๐‘๐‘ of condensate: , , are determined for surface๐‘‘๐‘‘๐‘‘๐‘‘ and saturation2 average temperature = (7.1) ๐‘๐‘ ๐‘ก๐‘ก ๐‘๐‘ ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 1 ( ) ๐›ฟ๐›ฟ ๐พ๐พ ๐œ‡๐œ‡ Tubeside resistance was computed as follows: = ๐‘š๐‘š ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐ท๐ท๐‘–๐‘– 2๐พ๐พ๐‘š๐‘š ๐‘…๐‘… ๐ท๐ท ๐‘™๐‘™๐‘™๐‘™ ๐‘‡๐‘‡๐‘ ๐‘ + ๐‘‡๐‘‡๐‘ ๐‘ +๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘๐‘๐‘ = ( ) (7.2) Tube๐‘“๐‘“ side resistance was computed based on ๐‘‡๐‘‡ 2 ๐‘๐‘๐‘๐‘ ๐พ๐พ๐‘ก๐‘ก dimensionless equation for forced convection for = 0.0158โˆ’1 . . (7.3) ๐‘…๐‘…๐‘ก๐‘ก ๐ท๐ท๐‘–๐‘– turbulent flow inside a circular pipe: 0 835 0 426 = (7.4) = ( ) (5.5) ๐‘๐‘๐‘๐‘ ๐‘‰๐‘‰๐‘”๐‘” ๐ท๐ท๐‘–๐‘–๐›ฟ๐›ฟ๐‘”๐‘” ๐‘…๐‘…๐‘…๐‘… ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘๐‘๐‘๐‘ ๐พ๐พ๐‘ก๐‘ก โˆ’1 . = ๐œ‡๐œ‡๐‘”๐‘” (7.5) ๐‘ก๐‘ก . . ๐‘…๐‘…๐‘…๐‘… =๐‘…๐‘…0.021 ๐ท๐ท๐‘–๐‘– (5.6) ๐‘Š๐‘Š๐‘”๐‘” 4

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘”๐‘” 0 25 ๐‘”๐‘” 2 0 8 0 43 ๐‘‰๐‘‰ = ๐›ฟ๐›ฟ๐‘”๐‘” ๐‘๐‘ ๐œ‹๐œ‹ ๐ท๐ท ๐‘–๐‘– (7.6) ๐‘๐‘๐‘๐‘ = ๐‘…๐‘…๐‘…๐‘… ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘”๐‘” (๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ก๐‘ก ) (5.7) ๐œ‡๐œ‡ ๐ถ๐ถ๐ถ๐ถ ๐‘‰๐‘‰๐‘”๐‘” ๐ท๐ท๐‘–๐‘–๐›ฟ๐›ฟ๐‘”๐‘” Shellside resistance for the first iteration was computed as ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐พ๐พ = ๐œ‡๐œ‡๐‘”๐‘” (5.8) follows: ๐‘…๐‘…๐‘…๐‘… ๐‘Š๐‘Š๐‘”๐‘” 4 = (7.7) 2 ๐‘‰๐‘‰๐‘”๐‘” = ๐›ฟ๐›ฟ๐‘”๐‘” ๐‘๐‘ ๐œ‹๐œ‹ ๐ท๐ท ๐‘–๐‘– (5.9) 1 ๐ท๐ท๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ Shellside resistance๐‘ ๐‘  for the3 next๐‘š๐‘š iteration๐‘ก๐‘ก was computed๐‘“๐‘“ / โ€“ calculated for water๐œ‡๐œ‡ ๐ถ๐ถ๐ถ๐ถ temperature and wall ๐‘…๐‘… ๐‘ˆ๐‘ˆ 10 โˆ’ ๐‘…๐‘… โˆ’ ๐‘…๐‘… ๐ท๐ท๐‘–๐‘– โˆ’ ๐‘…๐‘… ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐พ๐พ as follows: temperature = ๐‘”๐‘” ๐‘ก๐‘ก ๐‘”๐‘” = ( ) ( ) ( ) (7.8) ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒNomenclature๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ : โ€“ heat transfer coefficient๐‘‡๐‘‡, โ€“ tube 1 1 2 ฬ‡0 0 ๐‘ ๐‘ 0 0 ๐‘ก๐‘ก ๐‘ ๐‘  ๐‘๐‘๐‘๐‘ ๐‘„๐‘„ 3 ๐œ‡๐œ‡ 3 ๐พ๐พ ๐›ฟ๐›ฟ 3 inside diameter๐‘‡๐‘‡ ,๐‘‡๐‘‡ โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘โ€“ tube outside diameter, Nomenclature determined๐‘ ๐‘  ๐‘ ๐‘ 0 as in point 1.3. ๐‘–๐‘– ๐‘…๐‘… ๐‘…๐‘… ๐‘„๐‘„ฬ‡ ๐œ‡๐œ‡ ๐พ๐พ๐‘ ๐‘  ๐›ฟ๐›ฟ โ€“ tubewall ๐‘ˆ๐‘ˆresistance, โ€“ tubeside ๐ท๐ทthermal Index 0 means the value from the previous iteration. ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ conductivity, โ€“ ๐ท๐ทshellside thermal conductivity, Physical properties of condensate: , , are determined ๐‘š๐‘š ๐‘ก๐‘ก ๐พ๐พ โ€“ tubewall resistance, ๐พ๐พโ€“ tubeside resistance, for condensate film = 0.2 . ๐‘ ๐‘  โ€“ shellside ๐พ๐พresistance, โ€“ resistance, ๐›ฟ๐›ฟ ๐พ๐พ ๐œ‡๐œ‡ ๐‘š๐‘š ๐‘ก๐‘ก ๐‘“๐‘“ ๐‘ ๐‘  ๐‘…๐‘… Nuselt number, Prandl๐‘…๐‘… number, Reynolds Condenser technical๐‘‡๐‘‡ ๐‘‡๐‘‡ โˆ’data:๐ฟ๐ฟ๐ฟ๐ฟ Steel๐ฟ๐ฟ๐ฟ๐ฟ 1.4401 - ๐‘ ๐‘  โ€“ โ€“ ๐‘“๐‘“ โ€“ number๐‘…๐‘… , โ€“ average cooling๐‘…๐‘… water temperature, = 15 was assumed to be used, tube dimension

๐‘๐‘๐‘๐‘ cooling water velocity,๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ water ๐‘…๐‘…๐‘…๐‘…specific heat, ๐‘Š๐‘Š โ€“ ๐‘”๐‘” โ€“ ร˜24x0.7mm, condenser efficiency = 0.99, cleanliness ๐‘‡๐‘‡ ๐‘š๐‘š ๐‘š๐‘š ๐พ๐พ โ€“ enthalpy of exhausted steam vaporization, ๐พ๐พfactor k = 0.95; Calculation was done for two pass ๐‘”๐‘” ๐‘”๐‘” ๐‘๐‘ ๐‘‰๐‘‰ โ€“ The difference in ๐ถ๐ถ๐ถ๐ถcondensate and wall surface condenser with surface๐œ‚๐œ‚ tube area ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ ๐‘๐‘ temperatures๐‘‘๐‘‘๐‘‘๐‘‘ , โ€“ condensate viscosity, โ€“ cooling = 19177๐น๐น , quantity of tubes = 31920. ๐‘๐‘๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘water viscosity, โ€“ cooling water density, 2 ๐‘๐‘ ๐‘”๐‘” ๐‘ ๐‘  โ€“ condensate๐œ‡๐œ‡ density ๐œ‡๐œ‡ ๐ด๐ด1.6 Turbineโ€™s๐‘š๐‘š isentropic efficiency๐‘๐‘ ๐›ฟ๐›ฟ๐‘”๐‘” ๐‘๐‘ In calculation turbineโ€™s isentropic efficiency was used 1.4๐›ฟ๐›ฟ Heat transfer coefficient - HEI standard [4] = _ (8) In this case, the calculation of heat transfer coefficient is ๐‘–๐‘–๐‘ ๐‘ _ ๐ฟ๐ฟ๐ฟ๐ฟโˆ’๐‘–๐‘–๐‘ ๐‘  Nomenclature: 1โ€“ inlet LP turbine steam enthalpy, based on design guidelines of Heat Exchange Institute _๐œ‚๐œ‚ ๐‘–๐‘–๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟโˆ’๐‘–๐‘–๐‘ ๐‘ 0 โ€“ exhaust steam enthalpy, โ€“ exhaust steam enthalpy (HEI). The proposed function uses the data from ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ when isentropic ๐‘–๐‘–flow, โ€“ exhaust steam pressure, ๐‘–๐‘–๐‘ ๐‘  ๐‘–๐‘–๐‘ ๐‘ 0 ๐‘๐‘๐‘ ๐‘ 

2 E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

was set as a constant because in external test, small Table 1. Input data for calculations impact of vary this value as a function of load, for main 1 series 1 2 3 4 ๐œ‚๐œ‚calculation, was verified. load 100% 90% 75% 60% 1.7 Calculation procedure and example 48060 48060 48060 48060 calculation results ๐‘ก๐‘ก ๐‘”๐‘” 18.3 16.8 15.2 16.7 Variables calculation was based on the iterative ๐‘š๐‘šฬ‡ โ„Ž algorithm. Calculation procedure is the same for ๐‘‡๐‘‡1 โ„ƒ 753240 697910 587350 491770 dimensionless equation with characteristic number (CN) ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘ ๐‘  and HEI methods but different for ASME standard. ๐‘š๐‘š_ฬ‡ โ„Ž 278.7 273.6 280 272.6 Input data: โ€“ surface tube area, โ€“ quantity of tubes, ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ โ„ƒ โ€“ cleanliness factor, โ€“ tube inside diameter, ๐‘‡๐‘‡ _ 579 526 441 358 ๐‘ ๐‘  โ€“ tube๐ด๐ด outside diameter, ๐‘๐‘ โ€“ tubewall thermal ๐‘๐‘ ๐‘–๐‘– ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ 0.82 0.82 0.82 0.82 ๐น๐นconductivity, โ€“ cooling ๐ท๐ทwater flow rate, โ€“ cooling ๐‘๐‘ ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘š๐‘š water๐ท๐ท pressure, inlet cooling๐พ๐พ water temperature, Nomenclature:1 โ€“ cooling water flow rate; โ€“ inlet ๐‘”๐‘” โ€“ ๐‘”๐‘” ๐œ‚๐œ‚ ๐‘š๐‘šฬ‡ ๐‘๐‘ _ โ€“ inlet LP turbine steam pressure, _ โ€“ inlet LP cooling water temperature; โ€“ exhausted steam flow 1 ๐‘š๐‘šฬ‡ ๐‘”๐‘” ๐‘‡๐‘‡1 turbine steam temperature,๐‘‡๐‘‡ โ€“ exhausted steam flow rate; _ โ€“ inlet LP turbine steam temperature; _ โ€“ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  rate๐‘๐‘ , โ€“ condensate subcooling, โ€“ turbine๐‘‡๐‘‡ efficiency, inlet LP turbine steam pressure๐‘š๐‘šฬ‡ , โ€“ LP turbineโ€™s ๐‘ ๐‘  ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ โ€“ condenser efficiency, condenser๐‘š๐‘šฬ‡ pass number isentropic๐‘‡๐‘‡ efficiency ๐‘๐‘ ๐‘๐‘ 1 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ‚๐œ‚ ๐œ‚๐œ‚ Table 2. Example calculation results ๐œ‚๐œ‚๐‘๐‘ Calculation procedure CN, HEI method ASME method series 1 2 3 4 - Initialization parameters - Initialization load 100% 90% 75% 60% , parameters Calculation Calculation _ 4.63 4.09 3.47 3.56 ๐‘ ๐‘  ๐‘„๐‘„- ฬ‡ ๐‘ˆ๐‘ˆ based on (2) - = ( _ ๐‘๐‘ ( )), ๐‘๐‘๐‘ ๐‘  ๐‘…๐‘…๐‘…๐‘…๐‘…๐‘… ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ CN - based on (3) _ = ( _ , _ ) 2 ๐‘ ๐‘  ๐‘ ๐‘  - ๐‘‡๐‘‡ based on (4) - ๐‘‡๐‘‡ based๐‘“๐‘“ ๐‘‡๐‘‡ on๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (8) ๐‘๐‘ 4.31 3.77 3.12 3.10 ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ - ๐ฟ๐ฟ๐ฟ๐ฟ=๐ฟ๐ฟ๐ฟ๐ฟ( _ ( )), -๐‘–๐‘– = ๐‘“๐‘“( ๐‘๐‘, ) ๐‘‡๐‘‡ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘ ๐‘  ๐‘ ๐‘  ๐‘๐‘๐‘ ๐‘  466641 432688 368136 310295 ๐‘‡๐‘‡_ = ( _ , _ ) - ๐‘–๐‘– based on (1) ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘๐‘ ๐‘“๐‘“ ๐‘๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡ ๐‘ฅ๐‘ฅ ๐‘“๐‘“ ๐‘๐‘ ๐‘–๐‘– ๐‘˜๐‘˜๐‘˜๐‘˜ - based on (8) - based on (2) ๐‘„๐‘„ฬ‡ 3.45 3.41 3.38 3.45 ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘ ๐‘  ๐ฟ๐ฟ๐ฟ๐ฟ ฬ‡ -๐‘–๐‘– = ๐‘“๐‘“( ๐‘๐‘, ) ๐‘‡๐‘‡ - ๐‘„๐‘„ based on (4) ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘ ๐‘  2 2 - ๐‘–๐‘– based on (1) - ๐‘‡๐‘‡ based on (3)/ (7) ๐‘ˆ๐‘ˆ 26.6 24.5 21.7 22.2 ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘š๐‘š ๐พ๐พ - ๐‘ฅ๐‘ฅ based๐‘“๐‘“ ๐‘๐‘ on ๐‘–๐‘–(5) / (6) - ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ based on (3) 2 โ„ƒ HEI Next๐‘„๐‘„ฬ‡ iteration - ๐‘ˆ๐‘ˆ based on (4) ๐‘‡๐‘‡ ๐‘ˆ๐‘ˆ - ๐ฟ๐ฟ๐ฟ๐ฟ=๐ฟ๐ฟ๐ฟ๐ฟ( _ ( )) 4.88 4.28 3.51 3.41 ๐‘ ๐‘  Next๐‘‡๐‘‡ iteration ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘๐‘ ๐‘“๐‘“ ๐‘๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡ ๐‘๐‘ 467298 433316 368667 310664 In table 1 input data were presented. In table 2 ๐‘„๐‘„ฬ‡ ๐‘˜๐‘˜๐‘˜๐‘˜ 2.59 2.52 2.45 2.52 example calculation results compare with real exhausted ๐‘˜๐‘˜๐‘˜๐‘˜ 2 steam pressure were shown. ๐‘ˆ๐‘ˆ ๐‘š๐‘š ๐พ๐พ 26.6 24.5 21.7 22.2 1.8 Discussion of the results and exhaust ๐‘‡๐‘‡2 โ„ƒ ASME steam pressure calculation method selection. 3.84 3.38 2.83 2.87 Verifying calculations have been made for data from real ๐‘๐‘๐‘ ๐‘  ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ 466023 432138 367714 310000 units: 65MW and 460MW. This paper presents results for ๐‘˜๐‘˜๐‘˜๐‘˜ 5.19 5.11 5.02 5.06 ฯฑ ฦ‰ฦอพลฌWฤ‚อฟ ๐‘„๐‘„ฬ‡ ๐‘˜๐‘˜๐‘˜๐‘˜ ,ฤžฤ‚ฦšฤ‚ลฏฤ‚ลถฤฤž 2 ๐‘ˆ๐‘ˆ 26.6 24.5 21.7 22.2 ฯฐอ•ฯฑ E ๐‘š๐‘š ๐พ๐พ ,/ Nomenclature:2 โ„ƒ - reference exhausted steam, - ๐‘‡๐‘‡ _ calculated exhausted steam, condenser heat load, - ฯฐ ^D ๐‘ ๐‘  ๐‘…๐‘…๐‘…๐‘…๐‘…๐‘… โ€“ ๐‘ ๐‘  heat transfer coefficient๐‘๐‘ , โ€“ outlet cooling water๐‘๐‘ ฯฏอ•ฯฑ temperature ๐‘„๐‘„ฬ‡ ๐‘ˆ๐‘ˆ ๐‘‡๐‘‡2 ฯฏ the bigger one. Figure 1 presents calculated exhausted steam pressure compared with reference value. The most ฯฎอ•ฯฑ similar results to the expected value gave HEI method ฯญ ฯฎ ฯฏ ฯฐ although results of characteristic numbers method are also correct. The square root error of exhaust steam pressure Fig. 1. Exhausted steam pressure

3 E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

was used to assess the series of results. For calculation Using Stodola-Flรผgel turbine passage equation based on HEI method it is 0.176kPa, for characteristic calculation for 70% and 40% of nominal load were done. numbers method 0.361kPa, for ASME method 0.704kPa. Calculations input data were: , , and value For second reference unite the best results gave needed to exhausted steam pressure calculation. characteristic numbers and HEI method. Least accurate To compare the results operation๐‘ก๐‘ก0 following๐‘ก๐‘ก20 ๐‘๐‘๐‘’๐‘’๐‘’๐‘’ indicators results give ASME method. Although this method largely were calculated: gross unit heat rate and unit efficiency. based on similar equations as characteristic numbers = 3600 (9)

method, significant results difference follows on from ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ ๐‘˜๐‘˜๐‘˜๐‘˜ shellside resistance calculation. Reviewing the actual = (10) ๐‘ž๐‘ž ๐‘๐‘๐‘’๐‘’๐‘’๐‘’ [ ๐‘˜๐‘˜๐‘˜๐‘˜ โ„Ž] reference data, it is concluded that the results with the best ๐‘๐‘๐‘’๐‘’๐‘’๐‘’ Where = ( ) + ( ) accuracy were obtained using the HEI method. It is also ๐œ‚๐œ‚ ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ Comparing the proposed configurations, the following the simplest method when considering the complexity of ๐‘‘๐‘‘ 0 0 100 19 20 19 assumptions๐‘„๐‘„ฬ‡ were๐‘š๐‘š ๐‘–๐‘– made:โˆ’ ๐‘–๐‘– equal๐‘š๐‘š steam๐‘–๐‘– distributionโˆ’ ๐‘–๐‘– to the the calculations.

2 Comparison of three surface condenser connection setups on the cooling water side.

Four condenser connection configurations were tested: I- parallel (Fig.2), II-serial (Fig.3), III- parallel-to-serial Fig. 2. Parallel configuration (Fig.4) and IV- serial-to-parallel (Fig.5). For proposed thermal cycle (Fig.6) nominal load heat balance was calculated. Next heat balance for 70% and 40% of nominal load was computed. Considering steam flow change and thermodynamic parameters fluctuations, the influence of the tested connections on improving the unit efficiency was verified. Fig. 3. Serial configuration 2.1 Calculation procedure [6] The unit shown as a Figure 6 was described by energy and mass balances equations. The coefficients of the system of equations were appointed by the enthalpy value at the determined points. Enthalpy was calculated from the thermodynamics dependence in accordance with IAPWS

IF-97. Exhausted steam pressure was calculating based on Fig. 4. Parallel-to-serial configuration algorithm with HEI heat transfer coefficient. By iterating these three calculation steps, the pressure, temperature, enthalpy and mass flow were computed for the determined points at nominal load. Calculations input data were: โ€“ live steam pressure, โ€“ live steam temperature, โ€“ reheated steam 0 temperature, โ€“ electric power๐‘๐‘ and value needed to 0 20 ๐‘ก๐‘กexhausted steam pressure calculation๐‘ก๐‘ก presented in first Fig.5. Serial-to-parallel configuration part of this thesis๐‘๐‘๐‘’๐‘’๐‘’๐‘’ .

Fig.6. Tested thermal cycle scheme

4 E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

LP turbine part, the total surface tube in each 2.2 Result discusion configuration is similar, the amount of cooling water is The results of calculations for 100% and 40% loads are the same and the number of tubes has been chosen so that presented in tables 4.1-4.2. Figures 7.1-7.2 show the gross the cooling water velocity does not exceed 2.6 . unit heat rate for the nominal load when the value of ๐‘š๐‘š It was assumed: one pass surface condenser except the cooling water flow (7.1) and surface tube area (7.2) was ๐‘ ๐‘  parallel configuration where two pass surface condenser changed. The results were compared with the results from was selected; use of steel 1.4401 - = 15 ., tube the initial calculations (marked by x).

dimension ร˜ 22 x 0.5 mm, condenser efficiency๐‘Š๐‘Š = The best results in thermodynamic terms were ๐‘š๐‘š ๐‘š๐‘š ๐พ๐พ 0.99, cleanliness factor = 0.95; ๐พ๐พ obtained for a serial connection. In this case efficiency ๐‘๐‘ In table 3.1 and 3.2 input data for the calculations ๐œ‚๐œ‚were was improved by 0.15% compared to the parallel presented. Following, ๐น๐นproposed๐‘๐‘ configurations were connection for nominal load and 0.1% for minimum load. compared after changing parameters: temperature or flow Series-parallel connection was also somewhat more of cooling water, heat exchange surface, temperature of favorable, while other configurations are least beneficial. live and reheated steam, cleanliness factor ฦ‹อบฯญฯฌฯฌะนัฤจอพลตลอฟ ฦ‹อบฯญฯฌฯฌะนัฤจอพฦอฟ Tabela 3.1 Input data for the calculations (the same for all tลัฯดฯญฯฌฯฌฯฌ tลัฯฒฯญฯฎฯฌฯฌ ฦฮ•ฯฐฯดฯณฯฌฯฌ ฦฮ•ฯฏฯตฯฌฯฌฯฌ ลฌ:อฌลฌtลš tลัฯณฯฎฯฌฯฌฯฌ tลัฯตฯฌฯฌฯฌฯฌ ลฌ:อฌลฌtลš ฦฮ•ฯฑฯดฯฑฯฌฯฌ configuration) ฯฒฯตฯดฯฌ ฯฒฯตฯฑฯฌ

28.5 ~48700 ฯฒฯตฯฒฯฌ ฯฒฯตฯฏฯฌ 2 0 ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 600 s ๐‘š๐‘š 81000 ฯฒฯตฯฐฯฌ ๐‘๐‘ ๐ด๐ด ฯฒฯตฯญฯฌ ๐‘ก๐‘ก 0 โ„ƒ ๐‘”๐‘” ฯฒฯตฯฎฯฌ ๐‘ก๐‘ก 610/600* ๐‘š๐‘šฬ‡ - โ„Ž 0.89 ฯฒฯตฯฌฯฌ ฯฒฯดฯตฯฌ ๐‘ก๐‘ก20 โ„ƒ 16.0 ๐œ‚๐œ‚1 ฯฒฯดฯดฯฌ ฯฒฯดฯณฯฌ โ„ƒ Tabela๐‘‡๐‘‡1 3.2. Input data for the calculations (different for each / // /// /s / // /// /s ฤลฝลถฤจลลฦตฦŒฤ‚ฦšลลฝลถ ฤลฝลถฤจลลฦตฦŒฤ‚ฦšลลฝลถ configuration) Fig. 7.1. Gross unit heat rate Fig. 7.2. Gross unit heat rate configuration I** II** III** IV** tested configuration when tested configuration when

change for nominal load ๐‘”๐‘” change for nominal load 16252 16242 13935 20903 ๐‘š๐‘šฬ‡ ๐ด๐ดs 2 Figures 7.1-7.2 show the impact๐‘”๐‘” of changing the ๐‘ ๐‘ 1 ๐‘š๐‘š ๐‘š๐‘šฬ‡ ๐ด๐ด 16252 16242 13935 13935 relevant parameters on the gross unit heat rate q. On the 2 one hand, the results show that regardless of the tested ๐ด๐ด๐‘ ๐‘ 2 ๐‘š๐‘š 16252 16242 20903 13935 2 parameter, the serial system is the most advantageous. On ๐ด๐ด๐‘ ๐‘ 3 ๐‘š๐‘š 19640 25000 16840 25260 the other hand, the charts show the savings this configuration gives. For example, a similar indicator q for ๐‘๐‘1 19640 25000 16840 16840 72000 cooling water flow for serial configuration was obtained๐‘ก๐‘ก for 90000 using a parallel configuration 2 โ„Ž ๐‘๐‘ 19640 25000 25260 16840 ๐‘ก๐‘ก (Fig.7.1). This gives โ„Ža 20% reduction in the amount of *) Temperature3 for 40% load cooling water. Figure 7.2 shows that the same indicator q **) ๐‘๐‘Proposed configuration: I-parallel, II-serial ,III- parallel-to-serial and IV- serial-to-parallel as for the base data series in parallel configuration can be Nomenclature: โ€“ live steam pressure, โ€“live steam obtained by reducing the surface tube area by 20% for the temperature, โ€“reheated steam temperature, serial configuration - this can be interpreted as a 0 0 โ€“ cooling water๐‘๐‘ flow rate, โ€“ inlet ๐‘ก๐‘กcooling water decreasing surface tube area during operation. Similar 20 conclusions were reached when analyzing subsequent temperature, โ€“ ๐‘ก๐‘กsurface tube area โ€“ quantity of tubes ๐‘”๐‘” 1 results for the previously described parameters changes. ๐‘š๐‘šฬ‡ โ€“ LP turbineโ€™s isentropic efficiency๐‘‡๐‘‡ ๐ด๐ด๐‘ ๐‘  ๐‘๐‘ ๐œ‚๐œ‚1 Table 4.1. Calculations results for nominal load configuration I-parallel II-serial III-parallel-to-serial IV-serial-to-parallel m p m p m p m p i ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ 0 2416392 28.50๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 2393172 28.50๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 2413044 28.50๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 2406960 28.50๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 34 496260โ„Ž 0.00384 492192โ„Ž 0.00291 495648โ„Ž 0.00368 494604โ„Ž 0.00270 44 482724 0.00376 478836 0.00341 482148 0.00362 481176 0.00424 53 432900 0.00350 429552 0.00386 432432 0.00366 431568 0.00398 100 2416392 32.41 2393172 32.41 2413044 32.41 2406960 32.41 Operation indicators 6915 6892 6912 6907 0.521 0.522 0.521 0.521 ๐‘ž๐‘ž ๐œ‚๐œ‚

5 E3S Web of Conferences 137, 01027 (2019) https://doi.org/10.1051/e3sconf/201913701027 RDPE 2019

Table 4.2. Calculations results for 40% of nominal load configuration I-parallel II-serial III-parallel-to-serial IV-serial-to-parallel m p m p m p m p i ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ 0 910116 10.82๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 903996 10.85๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 909288 10.82๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 907560 10.83๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ 34 222300โ„Ž 0.00260 221796โ„Ž 0.00228 222264โ„Ž 0.00255 222120โ„Ž 0.00220 44 205992 0.00254 204624 0.00244 205848 0.00249 205452 0.00271 53 184248 0.00245 183024 0.00259 184068 0.00252 183744 0.00262 100 910116 12.31 903996 12.34 909288 12.31 907560 12.32 Operation indicators 7433 7416 7431 7427 0.484 0.485 0.484 0.485 ๐‘ž๐‘ž ๐œ‚๐œ‚ pump, which will certainly be higher due to the greater 3 Conclusions drop in water pressure due to the flow in the tubes. Summarizing the researches, it has been proven that This paper presents calculation and verification of which the most advantageous configuration for thermodynamic connection setups of surface condensers on the cooling reasons is the serial configuration. Although this setup has water side is the best from thermodynamics perspective. several important disadvantages that can have a The study was not easy, because the phenomena occurring significant impact on the final result. in the last stage of the turbine and in the condenser are complex and difficult to describe using mathematical References formulas. Therefore, in the first part of work, the focus was on describing and choosing the best method for 1. The International Association for the Properties of calculating the exhausted steam pressure of condensing Water and Steam, Revised Release on the IAPWS turbine. Three calculation methods were compared, Industrial Formulation 1997 for the Thermodynamic results were verified with data from the factual site. Properties of Water and Steam Considering the correctness of the results and the 2. Kostowski E.: Przepล‚yw Ciepล‚a, (2006) complexity of the calculations, the method based on HEI 3. Szlachtin P.N.: Turbiny Parowe, (1953) standard has been identified as the most advantageous 4. HEI Standards for Steam Surface, (2012) method for calculating the turbine exhaust steam pressure. 5. ASME PTC 12.2-2010 Steam Surface Condensers It needs to be highlighted that using this method to Performance Test Codes, (2007) calculate heat transfer coefficient requires only the 6. ลukowicz H.: Podstawy siล‚owni cieplnych, Wykล‚ady cooling water and condenser technical parameters. There is no need to enter the parameters of exhausted steam what simplifies the calculation. In the next step, four condenser connection configurations were tested. In each case, the serial configuration was the most thermodynamically favourable. For nominal parameters, obtained improvement of unit efficiency was around 0.15%. The use of this configuration can improve unit efficiency or reduce design or operating costs by reducing surface tube area, cooling water quantity, superheated steam temperature. However, for a serial connection, the problem of unequal operation of the LP turbine part attention should be paid to. The design of each parts of the turbine is the same, but when serial configuration is used, the exhausted steam pressure of each part is different, so they do not work at their optimal point. This is a significant problem when assuming the work of the unit mainly with nominal parameters. When serial connection is used, there is also a large dependence of the steam parameters of next LP turbine parts, which is not present for a parallel system. Incorrect assumptions or design calculations may have a greater impact to the operation then in parallel configuration. When choosing a series system, attention should also be paid to the useful power of the condensate

6