Steam Engines, a Thorough and Practical Presentation of Modern Steam Engine Practice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Diesel Engines
GENERAL ARTICLE The Evolution of Diesel Engines U Shrinivasa Rudolf Diesel thought of an engine which is inherently more efficient than the steam engines of the end-nineteenth century, for providing motive power in a distributed way. His intense perseverance, spread over a decade, led to the engines of today which bear his name. U Shrinivasa teaches Steam Engines: History vibrations and dynamics of machinery at the Department The origin of diesel engines is intimately related to the history of of Mechanical Engineering, steam engines. The Greeks and the Romans knew that steam IISc. His other interests include the use of straight could somehow be harnessed to do useful work. The device vegetable oils in diesel aeolipile (Figure 1) known to Hero of Alexandria was a primitive engines for sustainable reaction turbine apparently used to open temple doors! However development and working this aspect of obtaining power from steam was soon forgotten and with CAE applications in the industries. millennia later when there was a requirement for lifting water from coal mines, steam was introduced into a large vessel and quenched to create a low pressure for sucking the water to be pumped. Newcomen in 1710 introduced a cylinder piston ar- rangement and a hinged beam (Figure 2) such that water could be pumped from greater depths. The condensing steam in the cylin- der pulled the piston down to create the pumping action. Another half a century later, in 1765, James Watt avoided the cooling of the hot chamber containing steam by adding a separate condensing chamber (Figure 3). This successful steam engine pump found investors to manufacture it but the coal mines already had horses to lift the water to be pumped. -
No. 350,446. Patented .Oct. 5, 1886
(No Model.) 3 Sheets-Sheet 1. J. RICHARDS. ‘ ' COMPOUND STEAM ENGINE. No. 350,446. Patented .Oct. 5, 1886. : ' gvweml'o'c I (No Model.) 3 Sheets-Sheet 2. J. RICHARDS. COMPOUND STEAM ENGINE. No. 350,446. Patented 00's. 5, 1886.> I _ _._.|_ 6" ______I___l l _ _ _ _ __ |t____ ___ T ____|"f __—__ ' l |_ _ _ _ _ _ _ _ _'_ _ _ _ _ _ _ __ wand-50% ' gvwami'oz -' @Qf’d _ 33913 ' GMMW6%4 (No Model.) 3 Sheets-Sheet 3. J. RICHARDS. COMPOUND STEAM ENGINE. No. 350,446. - ' Patented Oct. 5, 1886. 2774/l/ _ L 1 M F37. a. / WA TE/i’ q/Vtlmeooao WM (5. MW N. PETERS. Pholo-Lilhngmphw. Wnshmglnh. Dv C. NI-TED STATES PATENT OFFICE. ’ JOHN RICHARDS, OF SAN FRANCISCO, ‘CALIFORNIA. COMPOUND STEAM-ENGINE. SPECIFICATION forming part of Letters Patent No. 350,446, dated October 5, 1886, ' Application ?led May 13, 1866. Serial No. 202,042. (No model.) To all whom. it may concern: right angles to the sectionslof Fig. 2, and trans Be it known that I, J OHN RICHARDS, a citi verse to the axial line of the shaft, and Fig. 4 zen of the United States, residing at San Fran is a partial top plan view. 55 cisco, in the county of San Francisco and State Like letters of reference designate like parts of California, have invented certain new and throughout the several views. useful Improvements in Compound Steam-.En A represents the main frame or hollow col gines; and I do declare the following to be a umn, which supports thereon the cylinder B, ' full, clear, and exact description of theinven and which is itself supported upon the base 0, tion, such as will enable others skilled in the ‘ said base serving also as a condenser, as will IO art to which it appertains to make and use be hereinafter explained. -
Triple-Expansion Steam Engine
WaterWords News from the Waterworks Museum - Hereford Winter 2015/16 120th Anniversary of the triple-expansion engine The Museum was delighted to receive as its guests of honour Sir Colin and Lady Shepherd on the occasion of the 120th anniversary of our gentle giant. Sir Colin made an incredibly support- ive and inspiring speech, followed by unveiling a commemorative engraved plaque as a permanent reminder of the historic day. The triple-expansion steam engine had been officially opened and set in motion in 1895 and by happy chance the anniver- sary was celebrated on the exact same day, 25th October. In an echo of the origi- nal event, Sir Colin ordered the engine to start and, thanks to detailed work a few minutes prior by Museum volunteer engi- neers, it did exactly as commanded! We were equally pleased to have present for this special occasion Candia Compton, representing the Southall Trust, accompa- nied by her husband Chris. Full report p4. Sir Colin and Lady Shepherd greeted by Museum Chairman Noel Meeke Grant awarded by the Record visitors Half-term fun day West Midlands Museum Only once in recent years, 2013, Development Group has the number of visitors to the Museum exceeded 5000. That year The Waterworks Museum will be the the figure reached 5079. national centre for the bicentenary celebrations marking the first patent The Trustees are pleased to report that awarded for a hot-air engine. In 1816 visitor numbers for 2015 have exceed- ed 5400, an increase over last year of the Rev Robert Stirling, a clergyman 13 per cent. -
P1359 Robust F HD-HDP.Pdf
(2007 =>) Users manual for frontloader ROBUST F HD / HDP 3311981 b Englisch P 1359 STOLL ROBUST F HD / HDP Table of contents page 1 Before operating 3 2 General safety information and prevention of accidents 5 2.1 Safety decal (=> 2007) 12 2.2 Safety decal (2007 =>) 13 3 Technical data 14 4 Description 16 5 Practical Application 18 5.1 Operation 18 5.1.1 Operation 19 5.1.2 Operation 20 5.2 Hydraulic system 21 5.3 Attaching of drive-in loader unit 22 5.4 Removal of the drive-in front loader 23 5.5 Mechanical single lever control unit SLV (option available) 26 5.5.1 Type 26 5.5.2 Definition of working directions 27 5.5.3 Definition of actuating directions 27 5.5.4 Additional functions joystick buttons 28 5.5.5 Operation fast stroke device 29 5.6 Quick installation and removal of attachments 30 5.7 Hydraulic implement control with switchable fast-stroke valve 31 5.8 Hydraulic diagram HE + HD 33 5.8.1 HD (standard – basic version) 33 5.8.2 HD (full equipped version) 34 5.9 Electrical Equipment HD 35 5.9.1 HD (standard – basic version) 35 5.9.2 HD Fully equipped electric version with 2-pole socket 36 5.9.3 HD Fully equipped electric version with 7-pole socket 37 5.10 Toogle switch 3rd Control circuit 38 5.11 Hydraulic parallel guidance of the implements 39 5.11.1 Advantages of hydraulic parallel motion ( HS = Hydraulical Selfleveling ) 39 5.11.2 Operation 40 5.11.3 Function 42 5.12 Control unit for "parallel motion" 43 5.13 Hydraulic diagram HDP 44 5.13.1 HDP (standard – basic version) 44 5.13.2 HDP (full equipped version) 45 5.14 Electrical -
Diesel and Fuel-Oil Engines
HdiiUiiat uuioTAt* VI i nPicrence moK not to do AUG 2 ^ : , CuKCH JlUili lilO L, iDi slil CS102E-42 Jf' Engines, Diese! and fuei-oil (export classifications) U. S. DEPARTMENT OF COMMERCE JESSE H. JONES, Secretary NATIONAL BUREAU OF STANDARDS LYMAN J. BRIGGS, Director DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 Effective Date for New Production from October 30, 1942 A RECORDED VOLUNTARY STANDARD OF THE TRADE UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Superintendent of Documents, Washington, D. C. Price 10 cents . U. S. Department of Commerce National Bureau of Standard? PROMULGATION of COMMERCIAL STANDARD CS102E-42 for DIESEL AND FUEL-OIL ENGINES (Export Classifications) On January 30, 1942, at the instance of the Diesel Engine Manu- facturers’ Association, a conference of representative manufacturers adopted a recommended commercial standard for Diesel and fuel -oil engines (export classifications). Those concerned have since accepted and approved the standard as shown herein for promulgation by the U. S. Department of Commerce, through the National Bureau of Standards. The standard is effective for new production from October 30, 1942. Promulgation recommended I. J. Fairchild, Chieff Division of Trade Standards, Promulgated. Lyman J. Briggs, Director^ National Bureau of Standards, Promulgation approved. Jesse H. Jones, Secretary of Commerce. II DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 PARTS Page 1. Nomenclature and definitions.. ' 1 2. Slow- and medium-speed stationary Diesel engines 7 3. Slow- and medium-speed marine Diesel engines 13 4. Small, medium- and high-speed stationary, marine, and portable Diesel engines 19 5. -
Steam As a General Purpose Technology: a Growth Accounting Perspective
Working Paper No. 75/03 Steam as a General Purpose Technology: A Growth Accounting Perspective Nicholas Crafts © Nicholas Crafts Department of Economic History London School of Economics May 2003 Department of Economic History London School of Economics Houghton Street London, WC2A 2AE Tel: +44 (0)20 7955 6399 Fax: +44 (0)20 7955 7730 1. Introduction* In recent years there has been an upsurge of interest among growth economists in General Purpose Technologies (GPTs). A GPT can be defined as "a technology that initially has much scope for improvement and evntually comes to be widely used, to have many uses, and to have many Hicksian and technological complementarities" (Lipsey et al., 1998a, p. 43). Electricity, steam and information and communications technologies (ICT) are generally regarded as being among the most important examples. An interesting aspect of the occasional arrival of new GPTs that dominate macroeconomic outcomes is that they imply that the growth process may be subject to episodes of sharp acceleration and deceleration. The initial impact of a GPT on overall productivity growth is typically minimal and the realization of its eventual potential may take several decades such that the largest growth effects are quite long- delayed, as with electricity in the early twentieth century (David, 1991). Subsequently, as the scope of the technology is finally exhausted, its impact on growth will fade away. If, at that point, a new GPT is yet to be discovered or only in its infancy, a growth slowdown might be observed. A good example of this is taken by the GPT literature to be the hiatus between steam and electricity in the later nineteenth century (Lipsey et al., 1998b), echoing the famous hypothesis first advanced by Phelps-Brown and Handfield-Jones, 1952) to explain the climacteric in British economic growth. -
Steam Engine Use and Development
STEAM ENGINE USE AND DEVELOPMENT A diagram of Cameron's aero-steam engine, from an 1876 dictionary The first industrial applications of the vacuum engines were in the pumping of water from deep mineshafts. The Newcomen steam engine [[12]] operated by admitting steam to the operating chamber, closing the valve, and then admitting a spray of cold water. The water vapor condenses to a much smaller volume of water, creating a vacuum in the chamber. Atmospheric pressure, operating on the opposite side of a piston, pushes the piston to the bottom of the chamber. In mineshaft pumps, the piston was connected to an operating rod that descended the shaft to a pump chamber. The oscillations of the operating rod are transferred to a pump piston that moves the water, through check valves, to the top of the shaft. The first significant improvement, 60 years later, was creation of a separate condensing chamber with a valve between the operating chamber and the condensing chamber. This improvement was invented on Glasgow Green, Scotland by James Watt[[13]] and subsequently developed by him in Birmingham, England, to produce the Watt steam engine [[14]] with greatly increased efficiency. The next improvement was the replacement of manually operated valves with valves operated by the engine itself. In 1802 William Symington built the "first practical steamboat", and in 1807 Robert Fulton used the Watt steam engine to power the first commercially successful steamboat. Such early vacuum, or condensing, engines are severely limited in their efficiency but are relatively safe since the steam is at very low pressure and structural failure of the engine will be by inward collapse rather than an outward explosion. -
Absolute Auction Complete Liquidation by Order of Trustee
ABSOLUTE AUCTION COMPLETE LIQUIDATION BY ORDER OF TRUSTEE `04 BERCO RTM225A-BS WEDNESDAY, DECEMBER 5, 2012 9:00 AM Altoona-Beasley Altoona, Pennsylvania Manufacturing, Inc. 1440 COWPATH RD. • HATFIELD, PA 19440 `00 BERCO 225A-40 `03 SERDI 100HD `04 FORD F-550XL SUPER DUTY 215/361-9099 • Fax: 215/361-9212 www.hunyady.com PRE-SORTED FIRST CLASS MAIL US POSTAGE PAID HAVERTOWN, PA PERMIT #45 ABSOLUTE AUCTION Altoona-Beasley Manufacturing, Inc. Notice: Pursuant to U.S. Bankruptcy Court Case #10-71091 and by Order of Trustee all equipment assets formerly owned and operated by Altoona-Beasley Manufacturing, Inc. shall be liquidated. All items must sell to the highest bidder without minimums, reserves, or buyer’s premiums! Location: The auction will be held at the Altoona-Beasley facility at 210 East Plank Road, Altoona, Pennsylvania 16602 Dismantlement and Loadout: Certain machines will be required to be dismantled and loaded out by a qualified rigger for safety purposes. Loadout fees will be added to the purchaser’s invoice. One rigger will be selected and must be used. No other contractors will be permitted. Individual fees will be published in the sale day catalog. Items not requiring professional rigging will be loaded by the auction company at no charge! Sale Site Directions: FROM INTERSTATE 99 SOUTH BOUND: Exit #32 (Frankstown Road) End of ramp at traffic light turn left onto Frankstown Road. Proceed to second traffic light and turn left onto Plank Road. Sale site will be on immediate right. FROM INTERSTATE 99 NORTH BOUND: Exit #32 (Frankstown Road) End of ramp at traffic light turn right onto Frankstown Road. -
Portable Diesel IC Engine
SAN DIEGO AIR POLLUTION CONTROL DISTRICT 10124 OLD GROVE ROAD, SAN DIEGO, CA 92131-1649 PHONE (858) 586-2600 • FAX (858) 586-2601 CERTIFICATE OF COMPLIANCE & San Diego APCD Use Only CERTIFICATE OF REGISTRATION APP/Reg. No.: RULE 12.1 ID No.: BEC/FS: APCD2019-CON-001560/34X Existing P/O No.: Portable Diesel Internal Combustion (New) for Emergency or Low Use Only Name of Owner (DBA): Legal Owner (if different from DBA): Equipment Description: Year: Manufacturer: Model No.: Serial No.: HP Rating: Type of Fuel: : Engine Use: ☐Emergency Engine or ☐Low-Use Engine (less than 200 hours per year) I, ________________________ , certify that I will be in compliance with all applicable District Rules and Regulations and the following conditions: (Print or type name) 1. If designated as an Emergency Engine in the above equipment description, the engine shall be operated exclusively in emergency applications except for up to 50 hours per year for maintenance and testing. If designated as a Low-Use Engine in the above equipment description, the engine shall be operated 200 hours or less each calendar year. (17CCR 93116) 2. Emissions from each registered engine shall not exceed 100 pounds of oxides of nitrogen (NOx) during any one day. [Rule 12.1(d)(1)] 3. An engine or equipment unit shall be configured and operated so as to meet the definition of a portable emission unit as defined in Rule 12.1. An engine's and/or equipment unit's certificate of registration shall be invalid when such equipment is used as an integral part of the operation of a stationary source or to supplement or expand the stationary source's operation. -
THESIS WASTE HEAT RECOVERY from a HIGH TEMPERATURE DIESEL ENGINE Submitted by Jonas E. Adler Department of Mechanical Engineerin
THESIS WASTE HEAT RECOVERY FROM A HIGH TEMPERATURE DIESEL ENGINE Submitted by Jonas E. Adler Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2017 Master’s Committee: Advisor: Todd M. Bandhauer Daniel B. Olsen Sybil E. Sharvelle Copyright by Jonas E. Adler 2017 All Rights Reserved ABSTRACT WASTE HEAT RECOVERY FROM A HIGH TEMPERATURE DIESEL ENGINE Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal (~5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant (~90°C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. -
The MUNCASTER Steam-Engine Models EDGAR T
The MUNCASTER steam-engine models EDGAR T. WESTBURY glances back with a modern eye toosome classic models of the past N THE COURSE of the long history caster is well remembered as a special- fore, need despise the crude and Of MODEL ENGINEER-now, in- ist in the design of all types of steam primitive types of models produced I cidentally, approaching 60 engines, whose excellent drawings of by beginners, so long as they lead on to years-many notable designs and many types of stationary and marine the more realistic types which were engines in early volumes of the M.E., Muncaster’s speciality. descriptive articles have been pub- and also in the handbook Model The simplest form of engine de- lished which have established tradi- Stationary Engines, published nearly scribed by Muncaster is one having a tions or marked milestones of half a century ago, provided scope single-acting oscillating cylinder (Fig. progress in model engineering. for the talents of innumerable con- 1) and this will commend itself to Not only are these remembered by structors. many readers, not only on account old readers but they are often the H. Muncaster was a practical of its simple construction, but also subject of considerable discussion. draughtsman who not only had a because it can be built without castings. and requests for further information wide experience of steam-engine design It is of the type which would now be about them are constantly encountered. but also obviously had a love and classed as “ inverted ” vertical, having A few of the authors of these features devotion to his craft, and to all the cylinder below the crankshaft, are still with us, and in one or two things mechanical. -
WSA Engineering Branch Training 3
59 RECIPROCATING STEAM ENGINES Reciprocating type main engines have been used to propel This is accomplished by the guide and slipper shown in the ships, since Robert Fulton first installed one in the Clermont in drawing. 1810. The Clermont's engine was a small single cylinder affair which turned paddle wheels on the side of the ship. The boiler was only able to supply steam to the engine at a few pounds pressure. Since that time the reciprocating engine has been gradually developed into a much larger and more powerful engine of several cylinders, some having been built as large as 12,000 horsepower. Turbine type main engines being much smaller and more powerful were rapidly replacing reciprocating engines, when the present emergency made it necessary to return to the installation of reciprocating engines in a large portion of the new ships due to the great demand for turbines. It is one of the most durable and reliable type engines, providing it has proper care and lubrication. Its principle of operation consists essentially of a cylinder in which a close fitting piston is pushed back and forth or up and down according to the position of the cylinder. If steam is admitted to the top of the cylinder, it will expand and push the piston ahead of it to the bottom. Then if steam is admitted to the bottom of the cylinder it will push the piston back up. This continual back and forth movement of the piston is called reciprocating motion, hence the name, reciprocating engine. To turn the propeller the motion must be changed to a rotary one.