University Microfilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms International 300 N INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Microfilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8418965 Lee, Richard Dalton THE INFLUENCE OF GIBBERELLIC ACID ON THE PHYTOTOXIC RESPONSE OF FLUAZIFOP-BUTYL IN JOHNSONGRASS (SORGHUM HALEPENSE (L.) PERS.) The Ohio State University Ph.D. 1984 University Microfilms International 300 N. Zeeb Road, Ann Arbor, Ml 48106 THE INFLUENCE OF GIBBERELLIC ACID ON THE PHYTOTOXIC RESPONSE OF FLUAZIFOP-BUTYL IN JOHNSONGRASS (SORGHUM HALEPENSE (L.) PERS.) DISSERTATION Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University Ly Richard Dalton Lee, B.S., M.S, ***** The Ohio State University 198U Reading Committee: Approved By: Leo E. Bendixen Edward W. Stroube Adviser Grant L. Jordan Department of Agronomy ACKNOWLEDGEMENTS The author wishes to express sincere gratitude to his adviser Dr. Leo E. Bendixen, for his friendship, assistance, and guidance during the graduate program at The Ohio State University. Much has heen gained in all aspects of Weed Science as a result of this experience. Thanks is also extended to those who served on the graduate committee, Drs. E. W. Stroube, C. A. Swanson, and G. L. Jordan, for their interest and input in this dissertation. Special appreciation is extended to the author's wife, Kristy, to whom this work is dedicated, and daughters Katie and Annie, theirs has been the role of giving patience, understanding, encouragement, and support during the past few years while in graduate school. Appreciation is also extended to parents who instilled the realization that knowledge and learning were the keys to inner peace. VITA May lU, 1953 ................... Birth - Paradise, Utah 1978 .......................... B.S., Utah State University, Logan, Utah 1978 - 1 9 8 0 .................. Research Assistant, Plant Science Department, Utah State University, Logan, Utah 1980 .......................... M.Sc. , Utah State University, Logan, Utah 1980 - 19 8 1 + ................... Research Associate, Department of Agronomy, The Ohio State University, Columbus, Ohio FIELDS OF STUDY Major Field: Agronomy (Weed Science). Studies in Agronomy. Professors Bendixen, Henderlong, Miller, and Parsons Studies in Biochemistry. Professors Gross and Ives ■Studies in Botany. Professors Cline, Evans, Floyd, and Swanson Studies in Entomology. Professor Collins Studies in Horticulture. Professor Gorske Studies in Pharmacy. Professors Brueggemeier, Feller, and Malspeis Studies in Physiological Chemistry. Professor Brierley iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.......................................... ii VITA..................................................... iii FIELDS OF S T U D Y .......................................... iii LIST OF TABLES.................................... vi LIST OF FIGURES.......................................... vii INTRODUCTION.............................................. 1 Chapter I. LITERATURE REVIEW................................. 3 History of the Plant.......................... 3 Description of the Plant...................... 1+ Growth Factors and Characteristics............. 6 Losses Due to Johnsongrass.................... 12 Practives for Controlling Johnsongrass......... ll+ History and Classification of Gibberellins, . 19 Biosynthesis, Metabolism, Extraction, and Purification of Gibberellins ............... 22 Transport of Gibberellins .................... 30 Influence of Gibberellins on Plant Processes................................. 32 Effects of Gibberellins on Translocation....... 1+1 Gibberellins and Herbicide Interaction......... 1+3 Fluazifop-butyl............................. 1+8 II. GIBBERELLIC ACID ENHANCED PHYTOTOXIC RESPONSE OF JOHNSONGRASS (SORGHUM HALEPENSE) TO POST-EMERGENCE GRAMINICIDES .................... 52 Introduction................................. 52 Materials and Methods ........................ 5^ Results and Discussion................ 56 Literature Cited............................. 65 iv V III. GIBBERELLIC ACID ENHANCEMENT OF FLUAZIFOP-BUTYL ABSORPTION AND PARTITIONING IN JOHNSONGRASS (SORGHUM HALEPENSE)............................... 67 Introduction.......................... 6 7 Materials and Methods ............. 68 Results and Discussion. ......... , 70 Literature Cited.............................. 82 CONCLUSION................................................ 81* LITERATURE CITED.......................................... 86 LIST OF TABLES Table Page 1. The rating scale used in the visual evaluation of leaves of johnsongrass treated with fluazifop-butyl, gibberellic acid, or combinations of the t w o ............ 57 2. Phytotoxic response of rhizome johnsongrass treated with selected herbicides with and without exogenously applied gibberellic acid (1981)..................... 58 3. Phytotoxic response of rhizome johnsongrass treated with selected herbicides with and without exogenously applied gibberellic acid (1982)..................... 59 4. Percent of the applied l4-C fluazifop-butyl label recovered, in specified plant fractions, after 24,48, and 96 hours without gibberellic acid application .... ........ 71 5. Percent of the applied l4-C fluazifop-butyl label recovered, in specified plant fractions, after 24, 48, and 96 hours with an exogenous gibberellic acid application................................. 74 6. Percent recovery of l4-C fluazifop-butyl label after 2k, 48, and 96 hours, in specified plant fractions, as influenced by an application of gibberellic a c i d ................................. 76 7. Percent of the applied 3-H gibberellic acid label recovered, in specified plant fractions, after 2k, 48, and 96 h o u r s .......... .. ........................... 77 vi LIST OF FIGURES Figure Page 1. Chemical structure of GAg with the accompanying ring designations and carbon numbers ................................... 21 2. Biosynthetic steps leading to the formation of gibberellins using several gibberellinsas examples ................... 25 3. Chemical structure of fluazifop- butyl ............................................ ^9 it. The visual response to fluazifop-butyl at specified rates, with different levels of gibberellic acid, as influenced by leaf a g e ............ 6l vii INTRODUCTION The influence of gibberellic acid on herbicidal phytotoxicity was first reported with 2,U-D (2,U-d.ichlorophenoxyacetic acid) and indicated that gibberellic acid application could alter the translocation pattern of the applied herbicide (7.8). Similar results were obtained using bean plants treated with 2,1/,5-T (2,U,5-trich- lorophenoxyacetic acid) and gibberellic acid in that gibberellic acid increased accumulation of 2,1j,5-T in the young shoots and decreased accumulation in roots and nutrient solution (lU,1 5). Studies with naptalara (N-l-napththylphthalamic acid) and gibberellic acid in wheat have shown that gibberellic acid stimulated naptalam uptake from the nutrient solution (^3)- Similarily, pre-treatment of bean plants with gibberellic acid resulted in greater absorption of naptalam (UU). In their study of/ gibberellic acid-enhanced phyto­ toxicity of bentazon (3-isopropyl-lH-2,l,3-benzothiadiazin-M3H)- one 2,2-dioxide) and glyphosate (N-(phosphonomethyl) glycine), Sterrett and Hodgson (209) reported that the enhanced phytotoxicity to Canada thistle (Cirsium arvense (L.) Scop.) may be due to changes in acropetal translocation and accumulation in leaf sinks. Fluazifop-butyl (butyl-2-(U-(5-trifluoromethyl-2-pyridyloxy)- phenoxy) propionate), a recently developed herbicide, is principally used in the post emergence control of
Recommended publications
  • Review with Checklist of Fabaceae in the Herbarium of Iraq Natural History Museum
    Review with checklist of Fabaceae in the herbarium of Iraq natural history museum Khansaa Rasheed Al-Joboury * Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq. GSC Biological and Pharmaceutical Sciences, 2021, 14(03), 137–142 Publication history: Received on 08 February 2021; revised on 10 March 2021; accepted on 12 March 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.14.3.0074 Abstract This study aimed to make an inventory of leguminous plants for the purpose of identifying the plants that were collected over long periods and stored in the herbarium of Iraq Natural History Museum. It was found that the herbarium contains a large and varied number of plants from different parts of Iraq and in different and varied environments. It was collected and arranged according to a specific system in the herbarium to remain an important source for all graduate students and researchers to take advantage of these plants. Also, the flowering and fruiting periods of these plants in Iraq were recorded for different regions. Most of these plants begin to flower in the spring and thrive in fields and farms. Keywords: Fabaceae; Herbarium; Iraq; Natural; History; Museum 1. Introduction Leguminosae, Fabaceae or Papilionaceae, which was called as legume, pea, or bean Family, belong to the Order of Fabales [1]. The Fabaceae family have 727 genera also 19,325 species, which contents herbs, shrubs, trees, and climbers [2]. The distribution of fabaceae family was variety especially in cold mountainous regions for Europe, Asia and North America, It is also abundant in Central Asia and is characterized by great economic importance.
    [Show full text]
  • Weed Control in Direct-Seeded Field Pea Gregory J
    Weed Control in Direct-seeded Field Pea Gregory J. Endres and Blaine G. Schatz Weed control and field pea response to selected soil- and POST-applied herbicides were evaluated in a randomized complete-block design with three replicates. The experiment was conducted on a Heimdahl loam soil with 6.7 pH and 2.9% organic matter at the NDSU Carrington Research Extension Center. Herbicide treatments were applied to 5- by 25-ft plots with a pressurized hand-held plot sprayer at 17 gal/A and 30 psi through 8002 flat-fan nozzles. Fall sulfentrazone treatments were applied October 25, 2004 to a moist soil surface with 47 F, 71% RH, 15% clear sky, and 11 mph wind. On April 28, 2005, inoculated 'Integra' field pea was seeded into standing wheat stubble in 7-inch rows at a rate of 300,000 pure live seeds/A. PRE treatments were applied to a dry soil surface on April 30 with 31 F, 64% RH, 30% clear sky, and 10 mph wind. Rainfall totaled 1.22 inches 8 d following PRE application. The trial area was treated on May 6 with a PRE burn-down application of glyphosate at 0.75 lb ae/A plus ammonium sulfate at 1% v/v. The early POST (EPOST) treatment was applied on May 23 with 73 F, 35% RH, 100% cloudy sky, and 6 mph wind to 2-inch tall field pea, 1- to 2-leaf green and yellow foxtail, 0.5-inch tall common lambsquarters, 0.5-inch tall prostrate and redroot pigweed, and 0.5-inch tall wild buckwheat.
    [Show full text]
  • Appendix C - Wildlife 9/8/2008
    INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 APPENDIX C - WILDLIFE C-1 INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 C-2 INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 Appendix C ......................................................................................................................... 1 Wildlife ............................................................................................................................... 1 Exposure Groups for Forest Service Sensitive Wildlife ................................................. 6 Effects of the Alternatives on Sensitive Wildlife ........................................................... 7 Tables C-5 – C-13 Herbicides ................................................................................... 11 Umatilla and Wallowa-Whitman National Forest Herbicide Spray Buffers ................ 12 Aquatics............................................................................................................. 15 Wildlife .............................................................................................................. 15 Worker Health: Based on backpack spray applications. ................................. 15 Public Health: ................................................................................................... 16 Summary of Herbicide Effects to Wildlife
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Weed Management—Major Crops
    Weed Technology 2010 24:1–5 Weed Management—Major Crops Annual Grass Control in Strip-Tillage Peanut Production with Delayed Applications of Pendimethalin W. Carroll Johnson, III, Eric P. Prostko, and Benjamin G. Mullinix, Jr.* In strip-tillage peanut production, situations occur when dinitroaniline herbicides are not applied in a timely manner. In these cases, dinitroaniline herbicides would be applied days or weeks after seeding. However, there is no information that documents the effects of delayed applications on weed control. Trials were conducted in 2004, 2005, and 2007 in Georgia to determine the weed control efficacy of delayed applications of pendimethalin in strip-tillage peanut production. Treatments included seven timings of pendimethalin application and three pendimethalin-containing herbicide combinations. Timings of application were immediately after seeding (PRE), vegetative emergence of peanut (VE), 1 wk after VE (VE+1wk), VE+2wk, VE+3wk, VE+4wk, and a nontreated control. Pendimethalin containing herbicide programs included pendimethalin plus paraquat, pendimethalin plus imazapic, and pendimethalin alone. Among the possible treatment combinations was a current producer standard timing for nonpendimethalin weed control programs in peanut, which was either imazapic or paraquat alone applied VE+3wk. Pendimethalin alone did not effectively control Texas millet regardless of time of application (69 to 77%), whereas southern crabgrass was controlled by pendimethalin alone PRE (87%). Delayed applications of pendimethalin controlled Texas millet and southern crabgrass when combined with either paraquat or imazapic, with imazapic being the preferred combination due to better efficacy on southern crabgrass than paraquat at most delayed applications. Peanut yield was improved when any of the herbicide combinations were applied PRE compared to later applications.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Multiple Resistance to Glyphosate, Paraquat and Accase
    Research Article Received: 5 September 2017 Revised: 16 October 2017 Accepted article published: 26 October 2017 Published online in Wiley Online Library: 8 December 2017 (wileyonlinelibrary.com) DOI 10.1002/ps.4774 Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance Parsa Tehranchian,a* Vijay Nandula,b Mithila Jugulam,c Karthik Puttac and Marie Jasieniuka Abstract BACKGROUND: Glyphosate, paraquat and acetyl CoA carboxylase (ACCase)-inhibiting herbicides are widely used in California annual and perennial cropping systems. Recently, glyphosate, paraquat, and ACCase- and acetolactate synthase (ALS)-inhibitor resistance was confirmed in several Italian ryegrass populations from the Central Valley of California. This research characterized the possible mechanisms of resistance. RESULTS: Multiple-resistant populations (MR1, MR2) are resistant to several herbicides from at least three modes of action. Dose–response experiments revealed that the MR1 population was 45.9-, 122.7- and 20.5-fold, and the MR2 population was 24.8-, 93.9- and 4.0-fold less susceptible to glyphosate, sethoxydim and paraquat, respectively, than the susceptible (Sus) population. Accumulation of shikimate in Sus plants was significantly greater than in MR plants 32 h after light pretreatments. Glyphosate resistance in MR plants was at least partially due to Pro106-to-Ala and Pro106-to-Thr substitutions at site 106 of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS gene copy number and expression level were similar in plants from the Sus and MR populations. An Ile1781-to-Leu substitution in ACCase gene of MR plants conferred a high level of resistance to sethoxydim and cross-resistance to other ACCase-inhibitors.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Use of Mesotrione for Annual Bluegrass (Poa Annua L.) at Cool
    USE OF MESOTRIONE FOR ANNUAL BLUEGRASS (POA ANNUA L.) AT COOL- SEASON TURFGRASS ESTABLISHMENT by KATELYN A. VENNER A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Plant Biology written under the direction of Stephen E. Hart Ph.D. and approved by ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2011 ABSTRACT OF THE THESIS USE OF MESOTRIONE AT COOL-SEASON TURFGRASS ESTABLISMENT By Katelyn Anne Venner Thesis director: Stephen E. Hart Annual bluegrass is a problematic weed in highly maintained turfgrass environments, and is difficult to control due to its adaptability to highly maintained turfgrass environments and lack of highly effective chemical control options. Mesotrione is a relatively new herbicide which has been found to show some level of control of annual bluegrass, and is safe to use at cool season turfgrass establishment. Thus, mesotrione has potential to be utilized for weed control in cultivated sod production. The objectives of this research were to evaluate mesotrione to determine: 1) tolerance of selected tall fescue cultivars, an important turfgrass species cultivated for sod, to applications of mesotrione; 2) the length of residual of mesotrione versus prodiamine, bensulide and dithiopyr for control of annual bluegrass; and 3) potential of mesotrione to control winter annual broadleaf weeds at Kentucky bluegrass establishment. Tall fescue cultivars were found to be tolerant to mesotrione applications made preemergence and preemergence plus 4 weeks after emergence at higher rates than required for weed control.
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Chemical Weed Control
    2014 North Carolina Agricultural Chemicals Manual The 2014 North Carolina Agricultural Chemicals Manual is published by the North Carolina Cooperative Extension Service, College of Agriculture and Life Sciences, N.C. State University, Raleigh, N.C. These recommendations apply only to North Carolina. They may not be appropriate for conditions in other states and may not comply with laws and regulations outside North Carolina. These recommendations are current as of November 2013. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your county Cooperative Extension agent. The use of brand names and any mention or listing of commercial products or services in this document does not imply endorsement by the North Carolina Cooperative Extension Service nor discrimination against similar products or services not mentioned. VII — CHEMICAL WEED CONTROL 2014 North Carolina Agricultural Chemicals Manual VII — CHEMICAL WEED CONTROL Chemical Weed Control in Field Corn ...................................................................................................... 224 Weed Response to Preemergence Herbicides — Corn ........................................................................... 231 Weed Response to Postemergence Herbicides — Corn ........................................................................
    [Show full text]