A Synopsis of the Lichen Genus Usnea (Parmeliaceae, Ascomycota) in Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

A Synopsis of the Lichen Genus Usnea (Parmeliaceae, Ascomycota) in Taiwan ῏῕῍ΐῐ῔ῌ (48), pp. 91ῌ137, 2012 ῒ 3 ῎ 28 ῑ Mem. Natl. Mus. Nat. Sci., Tokyo, (48), pp. 91ῌ137, March28, 2012 A Synopsis of the Lichen Genus Usnea (Parmeliaceae, Ascomycota) in Taiwan Yoshihito Ohmura Department of Botany, National Museum of Nature and Science, 4ῌ1ῌ1 Amakubo, Tsukuba, Ibaraki 305ῌ0005, Japan E-mail: [email protected] Abstract. A key to the 40 taxa in the genus Usnea in Taiwan is presented. Usnea articulata is new to Taiwan. Usnea mutabilis is excluded from the lichen flora of Taiwan. Photographs of diagnostic features are also provided for the species that have not been adequately illustrated previously based on the Asian materials. Orthographical errors were corrected in U. shimadae and U. pseudogatae. Key words: flora, lichenized Ascomycota, morphology, secondary substances, taxonomy, TLC. accepted taxa (39 species and one variety) of Introduction the genus Usnea in Taiwan, along with the The genus Usnea (Parmeliaceae, Ascomy- diagnostic features with images which have not cota) consists of ca. 300 species, and is widely been adequately illustrated previously. distributed from polar zones to tropical area (Kirk et al., 2008). Diagnostic features of the Materials and Methods genus include a fruticose thallus with a cortex, medulla, and a cartilaginous central axis, and This study is primarily based on Ohmura the presence of usnic acid in the cortex. (2001) and Ohmura et al. (2010) and the Monophyly of the genus has been confirmed by herbarium specimens deposited in the National molecular phylogenetic methods using the Museum of Nature and Science, Tokyo (TNS) taxa having these synapomorphic features and the National Museum of Natural Science, (Ohmura, 2002; Ohmura & Kanda, 2004; Taichung (TNM), as well as specimens col- Articus, 2004; Wirtz et al., 2006), although lected mainly by the author between 2008 and Articus (2004) elevated several infrageneric 2010. All specimens examined are deposited in groups to generic level (i.e., Dolichousnea, TNS otherwise indicated. Eumitria, Neuropogon,andUsnea). Morphological observations were made The Usnea flora of Taiwan was primarily using a dissecting microscope or a bright field summarized by Ohmura (2001) who revised microscope. The diameter of branch was meas- the former studies in this area made by ured using a well-developed thicker branch. Zahlbruckner (1933), Motyka (1936ῌ1938), The ratios of thickness of the cortex, medulla, and Asahina (1956, 1963, 1965a, 1965b, 1967a, and axis for the branch were measured follow- 1967b, 1967c, 1967d, 1968a, 1968b, 1969a, ing the method of Clerc (1984). The minimum- 1969b, 1969c, 1969d, 1970, 1972a, 1972b). average-maximum values of them are shown in After that, several taxa were added to the the description. Cross sections of thallus were Usnea flora in Taiwan (Aptroot et al., 2002; cut by hand with a razor blade, and observed Clerc, 2004; Ohmura et al., 2010). after mounting in GAW (glycerin : ethanol : This paper provides a practical key to 40 water, 1:1:1). 92 Yoshihito Ohmura Fig. 1. TLC spots of major lichen substance detected from Taiwanese Usnea (solvent B). Control of Rf classes 2 (stictic acid), 4 (norstictic acid) and 7 (atranorin) is shown in the leftmost column. The spot of usnic acid is shown in all columns as a standard except in a control column. Spot of diagnostic substance is encicled with a bold line. Fatty acid is encircled with a dashed line (fatty acid is visible only in wet condition of TLC plate). Spot color after heating (110ῌ, 10 min) with 10% H2SO4 is shown. 2dPsoῌ2ῌ-O-demethylpsoromic acid, 4dBarῌ4-O-demethylbarbatic acid, Atῌatranorin, Bae ῌbaeomycesic acid, Barῌbarbatic acid, Capῌcaperatic acid, ConStῌconstictic acid, Difῌdi#ractaic acid, Eumῌeumitrin, Evῌevernic acid, Fumῌfumarprotocetraric acid, Galῌgalbinic acid, Lecῌ lecanoric acid, Menῌmenegazziaic acid, Norῌnorstictic acid, ProCῌ protocetraric acid, Psoῌ psoromic acid, Salῌsalazinic acid, Sqῌsquamatic acid, Sticῌstictic acid, Thamῌthamnolic acid, Usῌusnic acid, Zeoῌzeorin, and unidentified substances (US1, US2, US3, and US5; see in Ohmura, 2001). Lichen substances were examined using thin Usnic acid is a constant substance in the layer chromatography (TLC) (Culberson & cortex of Usnea spp. although it varies in Johnson, 1982). Solvent Bsystem (hexane : amount depending on the place of thallus. methyl tert-butyl ether : formic acid, 140: 72 : Atranorin is sometimes detected as an accessa- 18) was used for all TLC analyses. A summary ry substance in various species such as U. of lichen substances detected from Taiwanese baileyi, U. fuscorubens, U. rubicunda, U. Usnea taxa is shown in Fig. 1. rubrotincta, and U. trichodeoides, and consid- Morphological and chemical characteristics ered to be no taxonomic value for distinguish- for distinguishing taxa are followed by ing species in the genus. Salazinic acid is one of Ohmura (2001). common substances in Taiwanese Usnea taxa, and often follows norstictic (minor), pro- tocetraric (faint trace) and constictic acids Results and Discussion (faint trace) (Fig. 1A). It is found in e.g. U. baileyi, U. cornuta subsp. cornuta, U. dasaea, Lichen substances in Taiwanese Usnea U. dendritica, U. fuscorubens, U. glabrata, U. Diagnostic substances and several accessary glabrescens, U. himalayana, U. masudana, U. substances detected in Taiwanese Usnea by nidifica, U. orientalis, U. pangiana, U. TLC are summarized by schematic illustration pseudogatae, U. rubrotincta (Race 1), U. in Fig. 1. shimadae, U. trichodeoides, and U. wasmuthii. Synopsis of the Genus Usnea in Taiwan 93 Fig. 2. Red pigmentation patterns in Taiwanese Usnea. A. Wine red pigment present in the cortex-side of medulla (U. baileyi). B. Strawberry pink pigment present in the cortex-side of medulla (U. ceratina). C. Red pigment in both subcortical thin layer and parts of cortex (U. bicolorata). D. Red pigment in cortex (U. rubicunda and U. rubrotincta). A. Fistulose axis. B-D. Solid axis. Galbinic acid (Fig. 1B) is found in U. dasaea with fumarprotocetraric acid in U. tricho- (Race 2) and U. shimadae, and its TLC spot deoides (Race 2), the occurrence or concentra- might become smear if its concentration is tion of the substance seems to be variable. high. Stictic acid usually follows constictic, Protocetraric acid accompany with fumarpro- menegazziaic, and norstictic acids (Fig. 1C). It tocetraric acid was detected in Taiwanese ma- is found in e.g. U. aciculifera, U. bismolliuscula, terials of U. trichodeoides. Both succinprotoce- U. pectinata, U. pygmoidea, U. rubicunda, and traric and protocetraric acids might be present U. rubrotincta (Race 2). Unidentified sub- in U. trichodeoides (Race 2) when they would stances of US1 and US2 (Ohmura 2001) are be checked by High Performance Liquid diagnostic substances for U. hakonensis.The Chromatography (HPLC). Psoromic (major) TLC spots repel water on the plate and exhibit- and 2ῌ-O-demethylpsoromic acids (minor) ing a lemon yellow color after heating (Fig. 1D). (Fig. 1H) are detected as accessary substances Norstictic acid (Fig. 1E), without salazinic acid, from U. rubicunda in Taiwan. Barbatic acid stictic acid, US1 and US2, is detected in e.g. U. (major) usually follows 4-O-demethylbarbatic angulata, U. fulvoreagens, U. praetervisa, and acid (minor) (Fig. 1I). Barbatic acid without U. sinensis. Protocetraric acid (Fig. 1F) with- di#ractaic acid is detected from U. dendritica, out other distinct substances is detected from U. longissima (Race 1), U. pangiana (Race 2), U. cornuta subsp. brasiliensis and U. hesperina. and U. wasmuthii (Race 2). Di#ractaic acid Fumarprotocetraric acid (Fig. 1G) is found in (major) usually follows small amount of U. articulata and U. trichodeoides (Race 2). barbatic, 4-O-demethylbarbatic, baeomycesic, Although Ohmura (2001) reported the pres- and squamatic acids (Fig. 1J). It is found in U. ence of succinprotocetraric acid accompany ceratina, U. di#racta, U. fulvoreagens (Race 2), 94 Yoshihito Ohmura and U. longissima (Race 2). Evernic acid 5b. Terminal and subterminal branches elon- (major) follows lecanoric acid (minor) (Fig. gated; sorediate fibrils abundant on 1K), and it is only found in U. longissima branches; soralia present on both fibrils (Race 3). Thamnolic acid (Fig. 1L) is a diag- and thick branches nostic substance for U. florida and U. sub- ῌῌῌῌῌῌῌῌU. rubrotincta Stirt. floridana. Caperatic acid (Fig. 1M) is known 6a. Cortex fragile on main branches, decor- as a constant substance in U. angulata, U. ticate or areolately corticate; thallus nipparensis, and U. sinensis. Unidentified sub- “fish-bone” like appearance with nu- stance of US5 (Ohmura, 2001) (Fig. 1N) is a merous perpendicular fibrils on elon- medurally red pigment of U. ceratina. Zeorin gated branches ῌῌῌῌῌῌῌῌῌ7 (Fig. 1O) is found as a constant substance in 6b. Cortex stable, consistent on the branches; U. baileyi and U. fulvoreagens. Eumitrins (A1, thallus not as above ῌῌῌῌῌῌῌ9 A2 and B) are detected in U. baileyi which 7a. Thallus with black to dark brown base; species usually follows salazinic and norstictic annular-pseudocyphellae absent; stictic acids, although eumitrins A1 and Bare variable acid present; saxicolous or corticolous in amount (Fig. 1O). ῌῌῌῌU. pectinata Taylor (Fig. 24) 7b. Thallus with concolous or pale base; Key to the Usnea taxa in Taiwan annular-pseudocyphellae present espe- 1a. Red pigment present in thallus (including cially near the base of thallus; stictic scattered small red spots on cortex) acid absent; corticolousῌῌῌῌῌῌ8 (Fig. 2) ῌῌῌῌῌῌῌῌῌῌῌῌ2 8a. Salazinic or fumarprotocetraric
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Fossil Usnea and Similar Fruticose Lichens from Palaeogene Amber
    The Lichenologist (2020), 52, 319–324 doi:10.1017/S0024282920000286 Standard Paper Fossil Usnea and similar fruticose lichens from Palaeogene amber Ulla Kaasalainen1 , Jouko Rikkinen2,3 and Alexander R. Schmidt1 1Department of Geobiology, University of Göttingen, Göttingen, Germany; 2Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland and 3Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland Abstract Fruticose lichens of the genus Usnea Dill. ex Adans. (Parmeliaceae), generally known as beard lichens, are among the most iconic epiphytic lichens in modern forest ecosystems. Many of the c. 350 currently recognized species are widely distributed and have been used as bioin- dicators in air pollution studies. Here we demonstrate that usneoid lichens were present in the Palaeogene amber forests of Europe. Based on general morphology and annular cortical fragmentation, one fossil from Baltic amber can be assigned to the extant genus Usnea. The unique type of cortical cracking indirectly demonstrates the presence of a central cord that keeps the branch intact even when its cortex is split into vertebrae-like segments. This evolutionary innovation has remained unchanged since the Palaeogene, contributing to the considerable ecological flexibility that allows Usnea species to flourish in a wide variety of ecosystems and climate regimes. The fossil sets the minimum age for Usnea to 34 million years (late Eocene). While the other similar fossils from Baltic and Bitterfeld ambers cannot be definitely assigned to the same genus, they underline the diversity of pendant lichens in Palaeogene amber forests. Key words: Ascomycota, Baltic amber, Bitterfeld amber, lichen fossils (Accepted 16 April 2020) Introduction et al.
    [Show full text]
  • The Puzzle of Lichen Symbiosis
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503 The puzzle of lichen symbiosis Pieces from Thamnolia IOANA ONUT, -BRÄNNSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9887-0 UPPSALA urn:nbn:se:uu:diva-319639 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, EBC, Norbyvägen 14, Uppsala, Thursday, 1 June 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Anne Pringle (University of Wisconsin-Madison, Department of Botany). Abstract Onuț-Brännström, I. 2017. The puzzle of lichen symbiosis. Pieces from Thamnolia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9887-0. Symbiosis brought important evolutionary novelties to life on Earth. Lichens, the symbiotic entities formed by fungi, photosynthetic organisms and bacteria, represent an example of a successful adaptation in surviving hostile environments. Yet many aspects of the lichen symbiosis remain unexplored. This thesis aims at bringing insights into lichen biology and the importance of symbiosis in adaptation. I am using as model system a successful colonizer of tundra and alpine environments, the worm lichens Thamnolia, which seem to only reproduce vegetatively through symbiotic propagules. When the genetic architecture of the mating locus of the symbiotic fungal partner was analyzed with genomic and transcriptomic data, a sexual self-incompatible life style was revealed. However, a screen of the mating types ratios across natural populations detected only one of the mating types, suggesting that Thamnolia has no potential for sexual reproduction because of lack of mating partners.
    [Show full text]
  • Cuivre Bryophytes
    Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen
    [Show full text]
  • Lectotypification of Usnea Confusa (Parmeliaceae, Ascomycota)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 45(2), pp. 63–70, May 22, 2019 Lectotypification of Usnea confusa (Parmeliaceae, Ascomycota) Yoshihito Ohmura1, * and Philippe Clerc2 1 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo Tsukuba, Ibaraki 305–0005, Japan 2 Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, Switzerland * E-mail: [email protected] (Received 25 February 2019; accepted 27 March 2019) Abstract The original material of Usnea confusa Asahina consists of several thalli glued on a cardboard. In order to avoid any future taxonomic confusion especially presence or absence of “isidiate soredia”, a single specimen with numerous isidiofibrils developing on the soralia was cho- sen as lectotype. The lectotype of U. confusa contains usnic, salazinic, constictic acids and trace amount of protocetraric acid as the secondary substances. ITS rDNA sequences of Japanese and Taiwanese specimens that have the same morphology and chemistry with the lectotype form two distinct clades nested within the strongly supported clade representing the core group of Usnea cornuta (containing U. cornuta Körber s.str.). Our molecular phylogenetic result based only on ITS rDNA sequences doesn’t allow to confirm or contradict the conspecificity of U. confusa with U. cornuta. Key words: isidiofibrils, ITS rDNA, lectotype, lichenized fungi, phylogeny, soralia, taxonomy. Introduction type (Gerlach et al., 2017), the density of medul- lary hyphae varies from dense to lax; the many In lichenology, the genus Usnea Adans. is chemotypes designated by main substances such known as one of the most difficult genera due to as: salazinic, constictic, stictic, norstictic, proto- the high morphological variability within species cetraric, psoromic, galbinic, thamnolic or lobaric (Clerc, 1998).
    [Show full text]
  • Morphological Traits in Hair Lichens Affect Their Water Storage
    Morphological traits in hair lichens affect their water storage Therese Olsson Student Degree Thesis in Biology 30 ECTS Master’s Level Report passed: 29 August 2014 Supervisor: Per-Anders Esseen Abstract The aim with this study was to develop a method to estimate total area of hair lichens and to compare morphological traits and water storage in them. Hair lichens are an important component of the epiphytic flora in boreal forests. Their growth is primarily regulated by available water, and light when hydrated. Lichens have no active mechanism to regulate their 2 water content and their water holding capacity (WHC, mg H2O/cm ) is thus an important factor for how long they remain wet and metabolically active. In this study, the water uptake and loss in five hair lichens (Alectoria sarmentosa, three Bryoria spp. and Usnea dasypoga) were compared. Their area were estimated by combining photography, scanning and a computer programme that estimates the area of objects. Total area overlap of individual branches was calculated for each species, to estimate total area of the lichen. WHC and specific thallus mass (STM) (mg DM/cm2) of the lichens were calculated. Bryoria spp. had a significantly lower STM compared to U. dasypoga and A. sarmentosa, due to its thinner branches and higher branch density. Bryoria also had a lower WHC compared to A. sarmentosa, promoting a rapid uptake and loss of water. All species had a significant relationship between STM and WHC, above a 1:1 line for all species except U. dasypoga. The lower relationship in U. dasypoga is explained by its less developed branching in combination with its thick branches.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • The Macroevolutionary Dynamics of Symbiotic and Phenotypic Diversification in Lichens
    The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens Matthew P. Nelsena,1, Robert Lückingb, C. Kevin Boycec, H. Thorsten Lumbscha, and Richard H. Reea aDepartment of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605; bBotanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany; and cDepartment of Geological Sciences, Stanford University, Stanford, CA 94305 Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved July 14, 2020 (received for review February 6, 2020) Symbioses are evolutionarily pervasive and play fundamental roles macroevolutionary consequences of ant–plant interactions (15–19). in structuring ecosystems, yet our understanding of their macroevo- However, insufficient attention has been paid to one of the most lutionary origins, persistence, and consequences is incomplete. We iconic examples of symbiosis (20, 21): Lichens. traced the macroevolutionary history of symbiotic and phenotypic Lichens are stable associations between a mycobiont (fungus) diversification in an iconic symbiosis, lichens. By inferring the most and photobiont (eukaryotic alga or cyanobacterium). The pho- comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) tobiont supplies the heterotrophic fungus with photosynthetically to date (over 3,300 species), we identified shifts among symbiont derived carbohydrates, while the mycobiont provides the pho- classes that broadly coincided with the convergent
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • Lichens of Alaska's South Coast
    United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]