THE SINGLE-CRYSTAL X-RAY STRUCTURES of BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE

Total Page:16

File Type:pdf, Size:1020Kb

THE SINGLE-CRYSTAL X-RAY STRUCTURES of BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE 1477 The Canadian Mineralogist Vol. 48, pp. 1477-1485 (2010) DOI : 10.3749/canmin.48.5.1477 THE SINGLE-CRYSTAL X-RAY STRUCTURES OF BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE SIMON L. HAGER, PETER LEVERETT§ AND PETER A. WILLIAMS School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia STUART J. MILLS Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada DavID E. HIBBS School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia MATI RAUDSEPP Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ANTHONY R. KAMPF Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA WILLIAM D. BIRCH Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia ABSTRACT The crystal structures of two polymorphic forms of bariopharmacosiderite have been determined. Bariopharmacosiderite-C, from Robinson’s Reef, Clunes, Victoria, Australia, (Ba0.47K0.04Na0.02)(Fe3.97Al0.03)[(As0.72P0.28)O4]3(OH)4•2.52H2O, is cubic, space group P43m, a 7.942(1) Å, Z = 1, R = 0.089. Bariopharmacosiderite-Q, from the Sunny Corner mine, Sunny Corner, New South Wales, Australia, Ba0.5Fe4(OH)4(AsO4)3•6.16H2O, is tetragonal, space group P42m, a 7.947(1), c 8.049(2) Å, Z = 1, R = 0.050. In the cubic polymorph, Ba ions are disordered over all faces of the unit cell, whereas in the tetragonal polymorph, Ba ions are centered on the 001 face. In both cases, the Ba ions are 12-coordinate, with eight bonds to arsenate oxygen atoms; four H2O groups complete the coordination sphere, with longer bonds to Ba in the cubic polymorph. Additional H2O groups are hydrogen-bonded to each other and to the H2O groups that coordinate Ba. Some of these exhibit “zeolitic” behavior. By analogy to the properties of synthetic pharmacoalumite, KAl4(AsO4)3(OH)4•nH2O, the cubic polymorph appears to be more stable than the tetragonal one, although two further body-centered polymorphs are known. In addition, the crystal structure of natropharmacosiderite from the Gold Hill mine, Utah, has been determined. Natropharmacosiderite, (Na0.75K0.14Ba0.11)S1.00 Fe4(AsO4)3(OH)3.89O0.11•4H2O, is cubic, space group P43m, with a 7.928(9) Å, Z = 1 and R = 0.0654. The Na position is displaced by ~0.2 Å from the Wyckoff 3c site, and is coordinated by four H2O groups and eight oxygen atoms of arsenate groups. A new general formula for “excess cation” pharmacosiderite is proposed, involving deprotonation of bridging hydroxide ions. Keywords: bariopharmacosiderite, natropharmacosiderite, crystal structure. SOMMAIRE Nous documentons la structure cristalline de deux formes polymorphiques de la bariopharmacosidérite. La bariopharmacosidérite-C, provenant de Robinson’s Reef, Clunes, Victoria, en Australie, (Ba0.47K0.04Na0.02)(Fe3.97Al0.03) § E-mail address: [email protected] 1478 The caNADIAN MINeralOGIST [(As0.72P0.28)O4]3(OH)4•2.52H2O, est cubique, groupe spatial P43m, a 7.942(1) Å, Z = 1, R = 0.089. La bariopharmacosidérite-Q, provenant de la mine Sunny Corner, à Sunny Corner, Nouveau Pays de Galles, en Australie, Ba0.5Fe4(OH)4(AsO4)3•6.16H2O, est tétragonal, groupe spatial P42m, a 7.947(1), c 8.049(2) Å, Z = 1, R = 0.050. Dans le polymorphe cubique, les ions Ba sont désordonnés sur toutes les faces de la maille élémentaire, tandis que dans le polymorphe tétragonal, les ions Ba sont centrés sur la face 001. Dans les deux cas, les ions Ba possèdent une coordinence 12, dont huit liaisons aux atomes d’oxygène de groupes arsenate; quatre groupes H2O viennent compléter la sphère de coordinence, avec des liaisons plus longues au Ba dans le polymorphe cubique. Des groupes H2O additionnels sont rattachés par liaisons hydrogène l’un à l’autre et aux groupes H2O entourant le Ba. Certains de ceux-ci font preuve d’un comportement “zéolitique”. Par analogie avec les propriétés de la pharmacoalumite synthétique, KAl4(AsO4)3(OH)4•nH2O, le polymorphe cubique semble être plus stable que le polymorphe tétragonal, quoique l’on connaisse deux autres formes polymorphiques à maille centrée. De plus, nous décrivons la structure cristalline de la natropharmacosidérite provenant de la mine Gold Hill, au Utah. La natropharmacosidérite, (Na0.75K0.14Ba0.11)S1.00 Fe4(AsO4)3(OH)3.89O0.11•4H2O, est cubique, groupe spatial P43m, avec a 7.928(9) Å, Z = 1 et R = 0.0654. La position Na est déplacée d’environ 0.2 Å de la position Wyckoff 3c, et l’atome est coordonné à quatre groupes H2O et huit atomes d’oxygène des groupes arsenate. Nous proposons une nouvelle formule générale pour les membres du groupe de la pharmacosidérite ayant un excédent de cations; cette formule implique une déprotonation des ponts d’hydroxyle. (Traduit par la Rédaction) Mots-clés: bariopharmacosidérite, natropharmacosidérite, structure cristalline. INTRODUCTION tetragonal, P42m and I42m, with a ≈ c ≈ 8 and 16 Å, respectively. We note that bariopharmacosiderite, as Pharmacosiderite, KFe4(AsO4)3(OH)4•nH2O, n = originally described, is tetragonal, a = 7.97, c = 8.10 Å; 5–6 (sensu stricto), has been known for more than the optical character is uniaxial negative with = 1.718 200 years, but until recently, several of its structural and v = 1.728 (Walenta 1966). Whereas single-crystal peculiarities have remained to be elucidated. It was X-ray structures for a number of synthetic AlP, MoP, originally proposed to be cubic, although anomalous TiSi, TiGe, (TiNb)Si and GeGe analogues of (FeAs) optical properties have been noted for many samples pharmacosiderite have been reported (Xu et al. 2004, of the mineral (Palache et al. 1951) and its congeners. and references therein), no satisfactory structure of any In line with early observations that it could be cation- pharmacosiderite-group minerals has appeared in the exchanged (Hartley 1899), bariopharmacosiderite literature, save for that of hydroniumpharmacosiderite. (Walenta 1966), natropharmacosiderite [renamed by However, the structure of a synthetic cubic phase with Burke (2008); originally described as sodium pharma- the pharmacosiderite structure, {[Rb1.94(H2O,OH)3.84] cosiderite; Peacor & Dunn (1985)], and hydronium- (H2)0.1}{Al4(OH)4[PO4]3}, was recently described pharmacosiderite (Mills et al. 2010a, 2010b) have since (Yakubovich et al. 2008). Here we report the structures been described. In addition, an Al-analogue of pharma- of cubic natropharmacosiderite, space group P43m, cosiderite, pharmacoalumite, is known (Schmetzer et bariopharmacosiderite-C and bariopharmacosiderite- al. 1981; for nomenclature, see Rumsey et al. 2010), as Q, space groups P43m and P42m, respectively. The are the Al-analogue of bariopharmacosiderite (Walenta suffixes -C and -Q refer to cubic and tetragonal poly- 1966) and natropharmacoalumite (Rumsey et al. 2010). morphs, respectively. Zemann (1947, 1948) reported the first structure of cubic pharmacosiderite, space group P43m; whereas EXPERIMENTAL the study established the overall framework of the structure, the K atoms could not be located. Similarly, Pale yellow crystals of bariopharmacosiderite from Buerger et al. (1967) reported a single-crystal structural the Sunny Corner mine, Sunny Corner, New South study confirming the basic lattice structure, but noted Wales, Australia, were analyzed (SEM, EDS, stan- that the structure in space group P43m is averaged, dardless) and gave Ba:Fe:As proportions very close and the K atoms could not be found. Furthermore, a to the ideal stoichiometry, 0.5:4:3. Only traces of Al spectrographic analysis failed to reveal the presence and other cations (Na, K) were detected. The crystals of any alkali metals; it may be that the crystal studied changed from pale yellow to green when left exposed was in fact the hydronium analogue, known previ- to the atmosphere for two weeks, and the pale yellow ously from ion-exchange studies (Hartley 1899, Heide color was restored upon heating at 100°C for 24 hours. 1928, Mutter et al. 1984). The careful study by Mutter Immersion in water for five minutes caused them to et al. (1984) did resolve ambiguities associated with become green again, indicating that at least part of reported anomalous optical properties and showed that the water of crystallization is “zeolitic” in nature. pharmacosiderite and its congeners could crystallize Pale orange-brown, optically isotropic crystals of in four related space groups; two are cubic, P43m and bariopharmacosiderite from Robinson’s Reef, Clunes, I43m, with a ≈ 8 and 16 Å, respectively, and two are Victoria, Australia (Museum Victoria specimen number barIOpharMacOSIDerITE, NATROpharMacOSIDerITE 1479 M7966) were analyzed (n = 5) with an electron micro- subsequent difference-Fourier syntheses, starting with probe (EMP) (WDS mode, 15 kV, 20 nA, 5 mm beam the coordinates of Zemann (1947, 1948) and Buerger et diameter). We used as standards albite (Na), synthetic al. (1967) and refined onF 2 by full-matrix least-squares KTaO3 (K), anandite (Ba), hematite (Fe), corundum methods using SHELXL (Sheldrick 2008). (Al), fluorapatite (P) and arsenopyrite (As). Analytical The unit cell of bariopharmacosiderite-Q is pseudo- results [average, (range, SD)] were Na 0.07 (0.01–0.26, cubic; we expected to find the Fe, As and O atoms 0.10), K 0.18 (0.05–0.54, 0.18), Ba 8.55 (7.96–10.0, in similar positions to those in the cubic pharmaco- 0.75), Fe 26.16 (24.58–27.02, 1.01), Al 0.08 (0.07–0.09, siderite-type structure of Buerger et al. (1967). This 0.02), As 19.96 (19.55–20.39, 0.34), P 3.21 (2.80–3.60, was confirmed, and the model refined isotropically to 0.27), total 85.39 wt%. Insufficient material was avail- an R1 value of 0.21.
Recommended publications
  • The Structure and Composition of the Mineral Pharmacosiderite
    Zeitschrift fUr Kristallographie, Bd. 125, S. 92-108 (1967) The structure and composition of the mineral pharmacosiderite By M. J. BUERGER, W. A. DOLLASE* and ISABEL GARAYCOCHEA-WITTKE** Massachusetts Institute of Technology, Cambridge, Massachusetts Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received April 17, 1967) Auszug Eine Struktur von Pharmakosiderit wurde von ZEMANN 1947 vorgeschlagen. An einem Pharmakosiderit von Cornwall untersuchten wir die Struktur von neuem. Obwohl die starken Reflexe mit P43m bei a = 7,98 A im Einklang sind, in Ubereinstimmung mit ZEMANNS Ergebnissen, verlangen doch einige schwa- chere Reflexe eine groJ3ere Elementarzelle, was zusammen mit einer schwachen Doppelbrechung auf eine geringere Symmetrie hinweist. Wegen der Inhomogeni- tat des Materials muJ3ten wir uns auf die Untersuchung einer gemittelten Struk- tur, bezogen auf eine isometrische Zelle mit a = 7,98 A, beschranken. Wir konn- ten die Struktur bis zu R = 6!% verfeinern. Unsere Untersuchung bestatigt das von ZEMANN vorgeschlagene Strukturgerust, andert jedoch etwas an der Aus- fUllung der offenen Raume, an der keine Alkaliatome beteiligt sind. Wenn die Struktur auf die isometrische Zelle mit a = 7,98 A bezogen wird, so konnen die Wassermolekiile nur teilweise die Punktlagen besetzen, denen sie zugeordnet sind. Wir schlieJ3en daraus, daJ3 das Pharmakosiderit-Gerust kontinuierlich ist, das Wasser in den Hohlraumen jedoch die Symmetrie verringert, und daJ3 sich der einheitlich erscheinende Kristall in Wirklichkeit aus Bereichen zusanunen- setzt, in denen die Anordnung der Wassermolekule einheitlich ist, aber an den Bereichsgrenzen Zwillingsorientierungen aufweist. Es wird gezeigt, daJ3 bei Behandlung von Pharmakosiderit mit Alkalihydro- xyd-Losungen Alkaliatome in die Struktur eindringen.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 96, pages 1654–1661, 2011 New Mineral Names* PAULA C. PIILONEN,1,† RALPH ROWE,1 GLENN POIRIER,1 AND KIMBERLY T. TAIT2 1Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2Department of Natural History, Royal Ontario Museum,100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada NEW MINERALS The streak is white and the Mohs hardness is estimated to be about 1½. Thin crystal fragments are flexible, but not elastic. The fracture is irregular and there are three cleavage directions: {001} AFMITE* perfect, {010} and {110} good. The mineral is non-fluorescent A.R. Kampf, S.J. Mills, G.R Rossman, I.M. Steele, J.J. Pluth, under all wavelengths of ultraviolet radiation. The density mea- sured by sink-float in aqueous solution of sodium polytungstate and G. Favreau (2011) Afmite, Al3(OH)4(H2O)3(PO4) is 2.39(3) g/cm3. The calculated density, based on the empirical (PO3OH)·H2O, a new mineral from Fumade, Tarn, France: de- 3 scription and crystal structure. Eur. J. Mineral., 23, 269–277. formula and single-crystal cell, is 2.391 g/cm and that for the ideal formula is 2.394 g/cm3. Afmite is found at Fumade, Castelnau-de-Brassac, Tarn, Electron microprobe analyses provided Al2O3 40.20 and France (43°39′30″N, 2°29′58″E). The phosphates occur in P2O5 38.84 wt% and CHN analyses provided H2O 25.64 wt%, fractures and solution cavities in shale/siltstone exposed in total 103.68 wt%.
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • Cu-Rich Members of the Beudantite–Segnitite Series from the Krupka Ore District, the Krušné Hory Mountains, Czech Republic
    Journal of Geosciences, 54 (2009), 355–371 DOI: 10.3190/jgeosci.055 Original paper Cu-rich members of the beudantite–segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic Jiří SeJkOra1*, Jiří ŠkOvíra2, Jiří ČeJka1, Jakub PláŠIl1 1 Department of Mineralogy and Petrology, National museum, Václavské nám. 68, 115 79 Prague 1, Czech Republic; [email protected] 2 Martinka, 417 41 Krupka III, Czech Republic * Corresponding author Copper-rich members of the beudantite–segnitite series (belonging to the alunite supergroup) were found at the Krupka deposit, Krušné hory Mountains, Czech Republic. They form yellow-green irregular to botryoidal aggregates up to 5 mm in size. Well-formed trigonal crystals up to 15 μm in length are rare. Chemical analyses revealed elevated Cu contents up 2+ to 0.90 apfu. Comparably high Cu contents were known until now only in the plumbojarosite–beaverite series. The Cu 3+ 3+ 2+ ion enters the B position in the structure of the alunite supergroup minerals via the heterovalent substitution Fe Cu –1→ 3– 2– 3 (AsO4) (SO4) –1 . The unit-cell parameters (space group R-3m) a = 7.3265(7), c = 17.097(2) Å, V = 794.8(1) Å were determined for compositionally relatively homogeneous beudantite (0.35 – 0.60 apfu Cu) with the following average empirical formula: Pb1.00(Fe2.46Cu0.42Al0.13Zn0.01)Σ3.02 [(SO4)0.89(AsO3OH)0.72(AsO4)0.34(PO4)0.05]Σ2.00 [(OH)6.19F0.04]Σ6.23. Interpretation of thermogravimetric and infrared vibrational data is also presented. The Cu-rich members of the beudan- tite–segnitite series are accompanied by mimetite, scorodite, pharmacosiderite, cesàrolite and carminite.
    [Show full text]
  • Talmessite from the Uriya Deposit at the Kiura Mining Area, Oita Prefecture, Japan
    116 Journal ofM. Mineralogical Ohnishi, N. Shimobayashi, and Petrological S. Kishi, Sciences, M. Tanabe Volume and 108, S. pageKobayashi 116─ 120, 2013 LETTER Talmessite from the Uriya deposit at the Kiura mining area, Oita Prefecture, Japan * ** *** Masayuki OHNISHI , Norimasa SHIMOBAYASHI , Shigetomo KISHI , † § Mitsuo TANABE and Shoichi KOBAYASHI * 12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan **Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan *** Kamisaibara Junior High School, 1320 Kamisaibara, Kagamino-cho, Tomada-gun, Okayama 708-0601, Japan † 2058-3 Niimi, Niimi, Okayama 718-0011, Japan § Department of Applied Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan Talmessite was found in veinlets (approximately 1 mm wide) cutting into massive limonite in the oxidized zone of the Uriya deposit, Kiura mining area, Oita Prefecture, Japan. It occurs as aggregates of granular crystals up to 10 μm in diameter and as botryoidal aggregates up to 0.5 mm in diameter, in association with arseniosiderite, and aragonite. The talmessite is white to colorless, transparent, and has a vitreous luster. The unit-cell parame- ters refined from powder X-ray diffraction patterns are a = 5.905(3), b = 6.989(3), c = 5.567(4) Å, α = 96.99(3), β = 108.97(4), γ = 108.15(4)°, and Z = 1. Electron microprobe analyses gave the empirical formula Ca2.15(Mg0.84 Mn0.05Zn0.02Fe0.01Co0.01Ni0.01)∑0.94(AsO4)1.91·2H2O on the basis of total cations = 5 apfu (water content calculated as 2 H2O pfu).
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 71, pages 227-232, 1986 NEW MINERAL NAMES* Pers J. Dulw, Gsoncr Y. CHao, JonN J. FrrzperRrcr, RrcHeno H. LaNcr-nv, MIcHeer- FrerscHnn.aNo JRNBIA. Zncznn Caratiite* sonian Institution. Type material is at the Smithsonian Institu- tion under cataloguenumbers 14981I and 150341.R.H.L. A. M. Clark, E. E. Fejer, and A. G. Couper (1984) Caratiite, a new sulphate-chlorideofcopper and potassium,from the lavas of the 1869 Vesuvius eruption. Mineralogical Magazine, 48, Georgechaoite* 537-539. R. C. Boggsand S. Ghose (1985) GeorgechaoiteNaKZrSi3Or' Caratiite is a sulphate-chloride of potassium and copper with 2HrO, a new mineral speciesfrom Wind Mountain, New Mex- ideal formula K4Cu4Or(SO4).MeCl(where Me : Na and,zorCu); ico. Canadian Mineralogist, 23, I-4. it formed as fine greenacicular crystalsin lava of the 1869 erup- S. Ghose and P. Thakur (1985) The crystal structure of george- tion of Mt. Vesuvius,Naples, Italy. Caratiite is tetragonal,space chaoite NaKZrSi3Or.2HrO. Canadian Mineralogist, 23, 5-10. group14; a : 13.60(2),c : a.98(l) A, Z:2.The strongestlines of the powder partern arc ld A, I, hkll: 9.61(l00Xl l0); Electron microprobe analysis yields SiO, 43.17, 7-xO229.51, 6.80(80X200); 4.296(60X3 I 0); 3.0I 5( 100b)(a 20,32r); 2.747 (7 0) NarO 7.42,IGO I1.28, HrO 8.63,sum 100.010/0,corresponding (4 I t); 2.673(60X5 I 0); 2.478(60)(002); 2. 3 8 8(70Xa 3 l, 50I ); to empirical formula Na, orl(oru(Zro rrTio o,Feo o,)Si, or Oe' 2.
    [Show full text]
  • REVISION 1 Mineralogical Controls on Antimony and Arsenic Mobility
    1 REVISION 1 2 Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite 3 weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, 4 Slovakia 5 Anežka Borčinová Radková1 *, Heather Jamieson1, Bronislava Lalinská-Voleková2, Juraj 6 Majzlan3, Martin Števko4, Martin Chovan5 7 8 1Department of Geological Sciences and Geological Engineering, Queen's University, Miller 9 Hall, 36 Union Street, Kingston, K7L 3N6, Ontario, Canada 10 2Slovak National Museum, Natural History Museum, Vajanského nábr. 2, P.O.BOX 13, 810 06 11 Bratislava, Slovakia 12 3Institute of Geosciences, Burgweg 11, Friedrich-Schiller University, D–07749 Jena, Germany 13 4Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, 6 14 Mlynska dolina G, SK-842 15 Bratislava, Slovakia 15 5 Institute of Geological Engineering, Technical University of Ostrava, 17. listopadu, 16 70833 Ostrava-Poruba, Czech Republic 17 18 *corresponding author: [email protected] 1 19 Abstract 20 The legacy of copper (Cu) mining at Špania Dolina-Piesky and Ľubietová-Svätodušná (central 21 Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony 22 (Sb), arsenic (As), Cu and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and 23 sulfosalt solid solution tetrahedrite-tennantite (Cu6[Cu4(Fe,Zn)2]Sb4S13 - 24 Cu6[Cu4(Fe,Zn)2]As4S13) that show widespread oxidation characteristic by olive-green color 25 secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb 26 contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron 27 microprobe analyses have been used to determine the mineralogy, chemical composition, 28 element distribution and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • 31St Annual Franklin-Sterling Mineral Exhibit
    granklin-Sterling al The Fluorescent Mineral Capitol of the World p Sat. & Sun., Oct. 3rd & 4th, 1987 c3,- .. ._ Sponsored by KIWANIS CLUB OF FRANKLIN FRANKLIN, NEW JERSEY MINERAL FREE, EDUCATIONAL, NON-PROFIT MINERAL MUSEUM O IN MEMORIUM LEE. S. ARESON w 1916 - 1987 Collector - Student - Missionary of Franklin N.J. History & Minerals C Honorary Member FOMS A Member North Jersey Min. Soc. S JENNIE ARESON E TEL. (914) 343-5051 21 IRWIN AVENUE MIDDLETOWN, NEW YORK 10940 eemohe tones mmmor, !POPP.) AMOIMOPOPOPPPOnOPOPOPPg,Mg ssos s ossossosossossosssss sssossoostssosesssossssssss The FRANKLIN - STERLING HILL MINERALS Edited from various sources by John L. Baum, Curator of the Franklin Mineral Museum, August, 1987, following the nomenclature of the 1983 Glossary of Mineral Species, and with special thanks to Dr. Pete J. Dunn. Acanthite Cahnite Fayalite Acmite Calcite Feitknechtite Actinolite Canavesite Ferrimolybdite Adamite Carrollite Ferristilpnomelane Adelite Caryopilite Ferroaxinite Akrochordite Celestine Flinkite Albite Celsian Fluoborite Allactite Cerussite Fluorapatite Allanite Chabazite Fluorapophyllite Alleghanyite Chalcocite Fluorite Almandine Chalcophanite Forsterite Analcime Chalcopyrite Franklinite Anatase Chamosite Friedelite Andradite Charlesite Anglesite Chlorophoenicite Gageite Anhydrite Chondrodite Gahnite Annabergite Chrysocolla Galena Anorthite Chrysotile Ganomalite Anorthoclase Clinochlore Ganophyllite Anthophyllite* Clinochry3otile Genthelvite Antigorite Clinoclase Gersdorffite Aragonite Clinohedrite Gerstmannite Arsenic
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Yolume 65, pages 205-210, 1980 NEW MINERAL NAMES* MTCH,q'EI.FrEIscrren. J. A. MANDARINo AND ADoLF Passr Adnontite* Analysisby H. V. (spectrophotometricfor Cu, Al, SO3,Cl; H2O by Penfield)gave SO, 28.30,Cl 6.70,Cu I1.80,Al2O3 9.16, Na2O K. Walenta (1979)Admontite, a new boratemineral from the gyp- 0.13,K2O 0.05,CaO 0.18,H2O 45.40,sum 101.72(-O = Clr) sum deposit Schildmauer near Admont in Styria (Austria). l00.2l%o,corresponding to Cut ' 28.1 H2O, or TschermaksMineral. Petrogr.Mitt., 26,69-77 (n German). urAlr(SO)c"aClz 1e CuAl(SOa)2Cl' 14 H2O. The DTA curve shows large endo- Admontite is a magnesium borate found in the gypsum deposit thermic breaksat 92" and l43o and small onesat 308o,730o, and of Schildmauer near Admont in Styria (Austria) in association 1047o,ttre last correspondingto the reduction of CuO to Cu2O. with gypsum, anhydrite, hexahydrite, kiweite, quartz, and pyrite. The TGA curve showsa loss(of H2O) of 35.6Voto 100' and 9.8% Chemicalanalysis gave MgO lO.20Vo,B2O354.50Vo (by difference), more from l00o to 300". Lossof SO3occurs at about 530oto 650o. H2O 35.30Vo,corresponding closely to 2MgO . B2O3. 15HrO. The Aubertite is soluble in water. mineral occurs in poorly developed colorless crystals of mono- X-ray study shows aubertite to be triclinic, Pl, a : 6.288x. clinic symmetry, elongatedparallel to c and flattened on {100}. 0.003,D: 13.239+0.006,c:6.284+O.003,{, a :91'52', B: Cell dirnensionsare: rl : 12.68,b : 10.07,c : 11.32(all +0.024), 94"40',y : 82"27'(alltl0'), Z: I, G calc 1.83,meas 1.815.
    [Show full text]