REVISION 1 Mineralogical Controls on Antimony and Arsenic Mobility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Structure and Composition of the Mineral Pharmacosiderite
Zeitschrift fUr Kristallographie, Bd. 125, S. 92-108 (1967) The structure and composition of the mineral pharmacosiderite By M. J. BUERGER, W. A. DOLLASE* and ISABEL GARAYCOCHEA-WITTKE** Massachusetts Institute of Technology, Cambridge, Massachusetts Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received April 17, 1967) Auszug Eine Struktur von Pharmakosiderit wurde von ZEMANN 1947 vorgeschlagen. An einem Pharmakosiderit von Cornwall untersuchten wir die Struktur von neuem. Obwohl die starken Reflexe mit P43m bei a = 7,98 A im Einklang sind, in Ubereinstimmung mit ZEMANNS Ergebnissen, verlangen doch einige schwa- chere Reflexe eine groJ3ere Elementarzelle, was zusammen mit einer schwachen Doppelbrechung auf eine geringere Symmetrie hinweist. Wegen der Inhomogeni- tat des Materials muJ3ten wir uns auf die Untersuchung einer gemittelten Struk- tur, bezogen auf eine isometrische Zelle mit a = 7,98 A, beschranken. Wir konn- ten die Struktur bis zu R = 6!% verfeinern. Unsere Untersuchung bestatigt das von ZEMANN vorgeschlagene Strukturgerust, andert jedoch etwas an der Aus- fUllung der offenen Raume, an der keine Alkaliatome beteiligt sind. Wenn die Struktur auf die isometrische Zelle mit a = 7,98 A bezogen wird, so konnen die Wassermolekiile nur teilweise die Punktlagen besetzen, denen sie zugeordnet sind. Wir schlieJ3en daraus, daJ3 das Pharmakosiderit-Gerust kontinuierlich ist, das Wasser in den Hohlraumen jedoch die Symmetrie verringert, und daJ3 sich der einheitlich erscheinende Kristall in Wirklichkeit aus Bereichen zusanunen- setzt, in denen die Anordnung der Wassermolekule einheitlich ist, aber an den Bereichsgrenzen Zwillingsorientierungen aufweist. Es wird gezeigt, daJ3 bei Behandlung von Pharmakosiderit mit Alkalihydro- xyd-Losungen Alkaliatome in die Struktur eindringen. -
Large-Scale Hydrothermal Zoning Reflectedin The
Canadian Mineralogist Vol. 27, pp. 383-400 (1989) LARGE-SCALE HYDROTHERMAL ZONING REFLECTED IN THE TETRAHEDRITE-FREIBERGITE SOLID SOLUTION, KENO HILL Ag-Pb-Zn DISTRICT, YUKON J.V. GREGORY LYNCH* Department of Geology, The University of Alberta, Edmonton, Alberta T6G 2E3 ABSTRACT en argent se distinguent aussi par une augmentation dans Ie nombre de cations dans leur formule chimique. Le rap- The zoned Keno Hill vein system of central Yukon port Sb/ As demeure uniformement eleve. extends laterally from a Cretaceous plutonic-metamorphic center and surrounding quartz-feldspar veins, to (Traduit par la Redaction) carbonate-Ag-Pb-Zn deposits, and further to peripheral veins having epithermal characteristics. Seven distinct Mots-cles: zonation hydrothermale, nappe aquifere, tetra- mineralogical zones are recognized, and the entire sequence edrite, solution solide, plutonique, epithermal, altera- is continuous from east to west in a 4O-km belt. The fault- tion, district de Keno Hill, Yukon. and fracture-controlled veins are stratabound to the brit- tle moderately dipping Keno Hill Quartzite unit, of Mis- INTRODUCTION sissippian age. The unit is graphitic and appears to have acted as a large-scale hydrothermal aquifer, restricting fluid This paper concerns the large-scale nature of the flow during minera1ization and" development of zoning predominantly to the lateral direction. Tetrahedrite is dis- Keno Hill hydrothermal system. A broad and con- tributed along a 25-km-Iong portion of the system, and is tinuous sequence of mineral zoning can be the principal ore mineral of Ag. Both Ag/Cu and Fe/Zn documented within veins distributed along an exten- values in tetrahedrite are highest at the outer extremity of sive portion of the Keno Hill Quartzite, which is the the system, where freibergite dominates over tetrahedrite; main host rock to the ore in the area. -
Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode
134 SHORT COMMUNICATIONS REFERENCES McKay, W. J. (1975) Woodlawn copper-lead-zinc orebody. Ibid. 701-10. Davis, L. W. (1975) Captains Flat lead-zinc orebody. In Knight, C. L. (ed.). Economic Geology of Australia and Papua New Guinea I. Metals. Melbourne, Australasian [Revised manuscript received 2 June 1981] Institute of Mining and Metallurgy, 691-700. Malone, E. J., Olgers, F., Cucchi, F. G., Nicholas, T., and t~) Copyright the Mineralogical Society Dept. of Geology, University of Wollonoong, New South Wales, Australia F. IVOR ROBERTS [Present address: School of Applied Geology, University of New South Wales, PO Box 1, Kensinoton , NSW 2033, Australia] MINERALOGICAL MAGAZINE, MARCH 1982, VOL. 46, PP. 134-6 Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode THE No. 1 Lode is the westernmost and most Mineralization within the Brioverian sediments extensive of three lead-zinc veins cutting Brioverian sediments at Le Pulec. It was described by Williams Anatase is common within the sediments as 2-10 (1871) as being between 1.5 and 1.8 m in width and pm anhedral grains associated with silicates or 183 m in length, with a trend of 340 ~ and the as 10 x 2 #m laths, parallel to the basal cleavage galena was reported to have a high silver content. of the altered phyllosilicates, particularly musco- Since the investigation of the No. 3 Lode (Ixer and vite. Anatase is also found with hematite laths Stanley, 1980) it has been possible to examine (20x 2 /~m) included in early pyrite grains. A several specimens, collected from the recently re- coarse-grained (600 x 20 pm) generation of anatase discovered No. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Liroconite Cu2al(Aso4)(OH)4 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
Liroconite Cu2Al(AsO4)(OH)4 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals with a flattened octahedral or lenticular aspect, dominated by {110} and {011} and striated parallel to their intersections, also {001}, {010}, {100}, to 3.6 cm, alone and in sub-parallel groups. May be granular, massive. Physical Properties: Cleavage: On {110}, {011}, indistinct. Fracture: Uneven to conchoidal. Hardness = 2–2.5 D(meas.) = 2.94–3.01 D(calc.) = [3.03] Optical Properties: Transparent to translucent. Color: Sky-blue, bluish green, verdigris-green, emerald-green; pale blue to pale bluish green in transmitted light. Streak: Pale blue to pale green. Luster: Vitreous to resinous. Optical Class: Biaxial (–). Orientation: Y = b; Z ∧ a =25◦. Dispersion: r< v,moderate. α = 1.612(3) β = 1.652(3) γ = 1.675(3) 2V(meas.) = n.d. 2V(calc.) = 72(5)◦ Cell Data: Space Group: I2/a. a = 12.664(2) b = 7.563(2) c = 9.914(3) β =91.32(2)◦ Z=4 X-ray Powder Pattern: Cornwall, England. 6.46 (10), 3.01 (10), 5.95 (9), 2.69 (6), 3.92 (5), 2.79 (5), 2.21 (5) Chemistry: (1) (2) P2O5 3.73 As2O5 23.05 26.54 Al2O3 10.85 11.77 Fe2O3 0.98 CuO 36.38 36.73 H2O 25.01 24.96 Total 100.00 100.00 • (1) Cornwall, England. (2) Cu2Al(AsO4)(OH)4 4H2O. Occurrence: A rare secondary mineral in the oxidized zone of some copper deposits. Association: Olivenite, chalcophyllite, clinoclase, cornwallite, strashimirite, malachite, cuprite, “limonite”. -
Indium-Bearing Paragenesis from the Nueva Esperanza and Restauradora Veins, Capillitas Mine, Argentina
Journal of Geosciences, 65 (2020), 97–109 DOI: 10.3190/jgeosci.304 Original paper Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina María Florencia MÁRQUEZ-ZAVALÍA1,2*, Anna VYMAZALOVÁ3, Miguel Ángel GALLISKI1, Yasushi WATANABE4, Hiroyasu MURAKAMI5 1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; [email protected] 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious- and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera- lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two ve- ins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium- and tellurium-bearing minerals. -
Silver Enrichment in the San Juan Mountains, Colorado
SILVER ENRICHMENT IN THE SAN JUAN MOUNTAINS, COLORADO. By EDSON S. BASTIN. INTRODUCTION. The following report forms part of a topical study of the enrich ment of silver ores begun by the writer under the auspices of the United States Geological Survey in 1913. Two reports embodying the results obtained at Tonopah, Nev.,1 and at the Comstock lode, Virginia City, Nev.,2 have previously been published. It was recognized in advance that a topical study carried on by a single investigator in many districts must of necessity be less com prehensive than the results gleaned more slowly by many investi gators in the course of regional surveys of the usual types; on the other hand the advances made in the study of a particular topic in one district would aid in the study of the same topic in the next. In particular it was desired to apply methods of microscopic study of polished specimens to the ores of many camps that had been rich silver producers but had not been studied geologically since such methods of study were perfected. If the results here reported appear to be fragmentary and to lack completeness according to the standards of a regional report, it must be remembered that for each district only such information could be used as was readily obtainable in the course of a very brief field visit. The results in so far as they show a primary origin for the silver minerals in many ores appear amply to justify the work in the encouragement which they offer to deep mining, irrespective of more purely scientific results. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
THE SINGLE-CRYSTAL X-RAY STRUCTURES of BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE
1477 The Canadian Mineralogist Vol. 48, pp. 1477-1485 (2010) DOI : 10.3749/canmin.48.5.1477 THE SINGLE-CRYSTAL X-RAY STRUCTURES OF BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE SIMON L. HAGER, PETER LEVERETT§ AND PETER A. WILLIAMS School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia STUART J. MILLS Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada DavID E. HIBBS School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia MATI RAUDSEPP Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ANTHONY R. KAMPF Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA WILLIAM D. BIRCH Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia ABSTRACT The crystal structures of two polymorphic forms of bariopharmacosiderite have been determined. Bariopharmacosiderite-C, from Robinson’s Reef, Clunes, Victoria, Australia, (Ba0.47K0.04Na0.02)(Fe3.97Al0.03)[(As0.72P0.28)O4]3(OH)4•2.52H2O, is cubic, space group P43m, a 7.942(1) Å, Z = 1, R = 0.089. Bariopharmacosiderite-Q, from the Sunny Corner mine, Sunny Corner, New South Wales, Australia, Ba0.5Fe4(OH)4(AsO4)3•6.16H2O, is tetragonal, space group P42m, a 7.947(1), c 8.049(2) Å, Z = 1, R = 0.050. In the cubic polymorph, Ba ions are disordered over all faces of the unit cell, whereas in the tetragonal polymorph, Ba ions are centered on the 001 face. -
Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering. -
Topographical Index
997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?), -
Tetrahedrite (Cu, Fe, Ag, Zn)12Sb4s13 C 2001-2005 Mineral Data Publishing, Version 1
Tetrahedrite (Cu, Fe, Ag, Zn)12Sb4S13 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Crystals are tetrahedral, to 15 cm; common as groups of parallel crystals; massive, coarse or fine and granular to compact. Twinning: On {111} around [111] as twin axis; contact and penetration twins, commonly repeated. Physical Properties: Fracture: Subconchoidal. Tenacity: Somewhat brittle. Hardness = 3–4.5 VHN = 312–351 (100 g load). D(meas.) = 4.97 D(calc.) = 4.99 Optical Properties: Opaque, except in very thin fragments. Color: Flint-gray to iron-black to dull black, cherry-red in transmitted light; in polished section, gray inclining to olive-brown. Streak: Black to brown. Luster: Metallic, commonly splendent. Optical Class: Isotropic. n = > 2.72 (Li). R: (400) 32.1, (420) 31.8, (440) 31.7, (460) 31.7, (480) 31.8, (500) 32.0, (520) 32.2, (540) 32.4, (560) 32.4, (580) 32.3, (600) 32.0, (620) 31.5, (640) 31.0, (660) 30.6, (680) 30.2, (700) 29.8 Cell Data: Space Group: I43m. a = 10.23–10.55 Z = 2 X-ray Powder Pattern: Neugl¨uck mine, Wittichen, Black Forest, Germany. 3.00 (100), 1.831 (60), 1.563 (30), 2.61 (20), 1.056 (20), 3.69 (10), 2.46 (10) Chemistry: (1) (2) (3) (1) (2) (3) Cu 45.39 37.7 45.77 Fe 1.32 5.5 Ag 0.4 Sb 28.85 29.3 29.22 Pb 0.11 As trace 0.8 Zn 1.8 S 24.48 24.9 25.01 Total 100.15 100.4 100.00 (1) Bourg d’Oisans, France.