Talmessite from the Uriya Deposit at the Kiura Mining Area, Oita Prefecture, Japan

Total Page:16

File Type:pdf, Size:1020Kb

Talmessite from the Uriya Deposit at the Kiura Mining Area, Oita Prefecture, Japan 116 Journal ofM. Mineralogical Ohnishi, N. Shimobayashi, and Petrological S. Kishi, Sciences, M. Tanabe Volume and 108, S. pageKobayashi 116─ 120, 2013 LETTER Talmessite from the Uriya deposit at the Kiura mining area, Oita Prefecture, Japan * ** *** Masayuki OHNISHI , Norimasa SHIMOBAYASHI , Shigetomo KISHI , † § Mitsuo TANABE and Shoichi KOBAYASHI * 12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan **Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan *** Kamisaibara Junior High School, 1320 Kamisaibara, Kagamino-cho, Tomada-gun, Okayama 708-0601, Japan † 2058-3 Niimi, Niimi, Okayama 718-0011, Japan § Department of Applied Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan Talmessite was found in veinlets (approximately 1 mm wide) cutting into massive limonite in the oxidized zone of the Uriya deposit, Kiura mining area, Oita Prefecture, Japan. It occurs as aggregates of granular crystals up to 10 μm in diameter and as botryoidal aggregates up to 0.5 mm in diameter, in association with arseniosiderite, and aragonite. The talmessite is white to colorless, transparent, and has a vitreous luster. The unit-cell parame- ters refined from powder X-ray diffraction patterns are a = 5.905(3), b = 6.989(3), c = 5.567(4) Å, α = 96.99(3), β = 108.97(4), γ = 108.15(4)°, and Z = 1. Electron microprobe analyses gave the empirical formula Ca2.15(Mg0.84 Mn0.05Zn0.02Fe0.01Co0.01Ni0.01)∑0.94(AsO4)1.91·2H2O on the basis of total cations = 5 apfu (water content calculated as 2 H2O pfu). It is suggested that the talmessite formed as a secondary mineral derived from löllingite, calcite, and diopside. Keywords: Talmessite, Secondary mineral, Arsenate, Uriya deposit, Kiura INTRODUCTION ported by Catti et al. (1977). Joswig et al. (2004) also not- ed the structure of ‘talmessite,’ but the material was in Talmessite, a rare calcium-magnesium arsenate mineral, fact beta-roselite, which contains more Co than Mg. was first described from the oxidized zone of the Talmessi During fieldwork at the Uriya deposit of the Kiura mine, Iran by Bariand and Herpin (1960). They are also mining area, Japan, two of the present authors (S.K. and noted cobaltoan talmessite from Bou Azzer, Morocco. M.T.) recognized a white to colorless mineral. Powder X- The mineral was subsequently reported from Tsumeb, Na- ray diffraction (XRD) and electron microprobe analyses mibia (Sturman and Dunn, 1980), Kővágószőlős, Hunga- confirmed the mineral to be talmessite. This is the first ry (Szakáll et al., 1994), the Khovu-Aksy Ni-Co deposit, discovery of talmessite in Japan. The present paper pro- Russia (Pekov et al., 2001), and other localities. With an vides a mineralogical description of the talmessite and ideal formula of Ca2Mg(AsO4)2·2H2O, talmessite is a discusses its genesis. member of the fairfieldite group. The chemical formula of this group is generally represented by Ca2M(XO4)2·2H2O OCCURRENCE 2+ 2+ (where M = Co, Fe , Mg, Mn , Ni, or Zn and X = As or_ P), and the crystal system is triclinic with space group P1. The Uriya deposit is located in the eastern part of the Kiu- Talmessite is the Mg-dominant analogue of beta-roselite ra mining area at Kiura-Kozan, Ume, Saiki City, Oita (M = Co), gaitite (Zn), parabrandtite (Mn2+), and nickel- Prefecture, Kyushu, Japan (32°48′N, 131°33′E). The de- talmessite (Ni). The crystal structure of talmessite was re- posit had been worked mainly for arsenic. The ore body is a skarn-type deposit of limestone and slate belonging to doi:10.2465/jmps.121022g the Chichibu terrane and is intruded by Late Miocene M. Ohnishi, [email protected] Corresponding author Okueyama granite. The ore and gangue minerals are pre- Talmessite from the Uriya deposit at Kiura, Japan 117 Figure 1. A photograph of talmessite from the Uriya deposit. Color version of Figure 1 is available online from http://japanlinkcen ter.org/DN/JST.JSTAGE/jmps/121022g. dominantly löllingite, calcite, quartz, wollastonite, and fluorite, with lesser amounts of arsenopyrite, scheelite, cassiterite, sphalerite, gold, bismuth, diopside, vesuvian- ite, grossular, and others (Miyahisa, 1962). The oxidized zone of the deposit consists chiefly of limonite formed by oxidization of löllingite, and following secondary miner- als have been recognized: arseniosiderite, bendadaite, conichalcite, ferrarisite, ‘ferrisymplesite,’ guérinite, karibibite, parasymplesite, pharmacolite, pharmacosider- ite, phaunouxite, picropharmacolite, scorodite, symple- site, and others (e.g., Ito et al., 1932; Ito et al., 1954; Fuji- wara et al., 2009; Matsubara et al., 2009; Uehara et al., Figure 2. A photomicrograph (crossed nicol) (a), a back-scattered 2010). electron image (BEI) (b), and element-distribution maps (c)-(g) Talmessite was found in veinlets cutting into mas- of talmessite and its associated minerals from the Uriya deposit. Abbreviations: Tlm, talmessite; Arg, aragonite; Ass, arseniosid- sive limonite near crystalline limestone in the oxidized erite; Lmn, limonite. zone. The veinlets are approximately 1 mm wide at the adit wall, and consist mainly of talmessite, arseniosiderite, and aragonite. The talmessite occurs as aggregates of granular crystals up to 10 μm in diameter and as botryoi- dal aggregates up to 0.5 mm in diameter in cavities in the veinlets (Figs. 1 and 2). The massive limonite also in- cludes other arsenate minerals, such as scorodite, pharma- cosiderite, and picropharmacolite. PHYSICAL PROPERTIES Talmessite from the Uriya deposit is white to colorless, transparent, and has a vitreous luster. Cleavage was not observed. The density, calculated from refined unit-cell parameters and the empirical formula, is 3.44 g/cm3. The Fourier transform-infrared absorption (FT-IR) Figure 3. FT-IR spectrum of talmessite from the Uriya deposit. spectrum was measured using a JASCO MET-680 FT-IR spectrometer with the KBr pellet method for the region of 4000 cm−1 to 400 cm−1 (Fig. 3). The broad absorption 118 M. Ohnishi, N. Shimobayashi, S. Kishi, M. Tanabe and S. Kobayashi −1 −1 bands at 3410 cm and 2950 cm are attributed to O-H present talmessite are absent in the pattern reported by stretching vibrations. The absorption bands at 970 cm−1, Pekov et al. (2001), the cell parameters agree well. −1 −1 860 cm , and 810 cm are attributed to AsO4 stretching −1 vibrations, and the band at 435 cm is attributed to AsO4 CHEMICAL COMPOSITION bending vibrations. Chemical analyses were carried out using a JEOL JXA- X-RAY DIFFRACTION 8105 electron microprobe analyzer with wavelength-dis- persive spectrometry (WDS) at Kyoto University (15 kV, Powder XRD data were obtained using a Rigaku Smart- 1 nA, and 5 μm beam diameter). Element-distribution Lab-SS diffractometer at Kyoto University with Ni-fil- mapping was also carried out using the WDS (Figs. 2c- tered CuKα radiation (40 kV and 40 mA). Based on 2g). Standard materials were wollastonite (Ca), periclase talmessite reported by Catti et al. (1977), the refractions (Mg), rhodonite (Mn), hematite (Fe), skutterudite (Co), of the mineral were indexed on the triclinic cell. The XRD pentlandite (Ni), sphalerite (Zn), synthetic GaAs (As), ap- data and unit-cell parameters refined by least squares are atite-(CaF) (P), and quartz (Si). All data were corrected listed in Table 1 and are compared with those of talmess- with a ZAF method. The water content was calculated as ite having near end-member composition reported by Pe- 2 H2O pfu. The average of five analyses is listed in Table kov et al. (2001). Although some diffraction lines for the 2. The empirical formula of the talmessite is Ca2.15(Mg0.84 Table 1. Representative powder XRD data for talmessite 1. Uriya deposit, Japan (present work). 2. Khovu-Aksy Ni-Co deposit, Russia (Pekov et al., 2001). Talmessite from the Uriya deposit at Kiura, Japan 119 3− Table 2. Chemical analyses of talmessite from the Uriya deposit AsO4 -bearing solution and limonite; (4) talmessite crys- 2+ 2+ 3− tallized from Ca , Mg , and AsO4 -bearing solution; and (5) associated aragonite crystallized from the residual liq- 2+ 2− uid containing Ca and CO3 after crystallization of talmessite, which does include carbonate. Talmessite from the Talmessi mine (Bariand and Herpin, 1960) and the Khovu-Aksy Ni-Co deposit (Pekov et al., 2001) is near the end-member composition. Talmessite-beta-roselite solid solution [Mg/(Mg + Co) = 0.65 (Bariand and Herpin, 1960), 0.45 (Joswig et al., 2004)] and talmessite-gaitite solid solution [Zn/(Mg + Zn) = 0.86 to 0.36 (Sturman and Dunn, 1980)] have also been reported. The present talmessite contains small amounts (less than 0.05 apfu) of Mn, Fe, Co, Ni, Zn, P, * Analyzed points. and Si. Generally, arsenate fairfieldite group minerals ** - Calculated as 2 H2O pfu. have low FeO contents : e.g., 0.32 wt% for beta roselite (Frondel, 1955); 0.2 wt% for gaitite (Sturman and Dunn, Mn0.05Zn0.02Fe0.01Co0.01Ni0.01)∑0.94(AsO4)1.91·2H2O on the ba- 1980) and parabrandtite (Dunn et al., 1987); and not given sis of total cations = 5 apfu. Although the Ca content is in for talmessite (Bariand and Herpin, 1960; Pierrot, 1964; excess, the formula is consistent with the ideal formula of Pekov et al., 2001) and nickeltalmessite (Chukanov et al., talmessite. 2009). These minerals also were not allocated Fe2O3 in the literature. From the data, it is likely that the minerals 3+ 3− DISCUSSION excluded Fe . Under the conditions in which AsO4 forms from primary arsenide minerals, Fe may easily be oxi- 3+ The talmessite-bearing massive limonite at the Uriya de- dized to Fe . Even if the environment is Fe-rich, the ar- posit is generally accompanied by various arsenate miner- senate fairfieldite group minerals remain free of or have als, such as scorodite, pharmacosiderite, arseniosiderite, only low amounts of Fe.
Recommended publications
  • The Structure and Composition of the Mineral Pharmacosiderite
    Zeitschrift fUr Kristallographie, Bd. 125, S. 92-108 (1967) The structure and composition of the mineral pharmacosiderite By M. J. BUERGER, W. A. DOLLASE* and ISABEL GARAYCOCHEA-WITTKE** Massachusetts Institute of Technology, Cambridge, Massachusetts Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received April 17, 1967) Auszug Eine Struktur von Pharmakosiderit wurde von ZEMANN 1947 vorgeschlagen. An einem Pharmakosiderit von Cornwall untersuchten wir die Struktur von neuem. Obwohl die starken Reflexe mit P43m bei a = 7,98 A im Einklang sind, in Ubereinstimmung mit ZEMANNS Ergebnissen, verlangen doch einige schwa- chere Reflexe eine groJ3ere Elementarzelle, was zusammen mit einer schwachen Doppelbrechung auf eine geringere Symmetrie hinweist. Wegen der Inhomogeni- tat des Materials muJ3ten wir uns auf die Untersuchung einer gemittelten Struk- tur, bezogen auf eine isometrische Zelle mit a = 7,98 A, beschranken. Wir konn- ten die Struktur bis zu R = 6!% verfeinern. Unsere Untersuchung bestatigt das von ZEMANN vorgeschlagene Strukturgerust, andert jedoch etwas an der Aus- fUllung der offenen Raume, an der keine Alkaliatome beteiligt sind. Wenn die Struktur auf die isometrische Zelle mit a = 7,98 A bezogen wird, so konnen die Wassermolekiile nur teilweise die Punktlagen besetzen, denen sie zugeordnet sind. Wir schlieJ3en daraus, daJ3 das Pharmakosiderit-Gerust kontinuierlich ist, das Wasser in den Hohlraumen jedoch die Symmetrie verringert, und daJ3 sich der einheitlich erscheinende Kristall in Wirklichkeit aus Bereichen zusanunen- setzt, in denen die Anordnung der Wassermolekule einheitlich ist, aber an den Bereichsgrenzen Zwillingsorientierungen aufweist. Es wird gezeigt, daJ3 bei Behandlung von Pharmakosiderit mit Alkalihydro- xyd-Losungen Alkaliatome in die Struktur eindringen.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Raman and Infrared Spectroscopy of Arsenates of the Roselite and Fairfeldite Mineral Subgroups
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray (2009) Raman and infrared spectroscopy of arsenates of the roselite and fair- feldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1788-1794. This file was downloaded from: https://eprints.qut.edu.au/17596/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher. Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.039 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. (2009) Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5). pp. 1788-1794. © Copyright 2009 Elsevier Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups Ray L. Frost• Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Abstract Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and 2+ fairfieldite subgroups of formula Ca2B(AsO4)2.2H2O (where B may be Co, Fe , Mg, 2- Mn, Ni, Zn).
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • THE SINGLE-CRYSTAL X-RAY STRUCTURES of BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE
    1477 The Canadian Mineralogist Vol. 48, pp. 1477-1485 (2010) DOI : 10.3749/canmin.48.5.1477 THE SINGLE-CRYSTAL X-RAY STRUCTURES OF BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE SIMON L. HAGER, PETER LEVERETT§ AND PETER A. WILLIAMS School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia STUART J. MILLS Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada DavID E. HIBBS School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia MATI RAUDSEPP Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ANTHONY R. KAMPF Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA WILLIAM D. BIRCH Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia ABSTRACT The crystal structures of two polymorphic forms of bariopharmacosiderite have been determined. Bariopharmacosiderite-C, from Robinson’s Reef, Clunes, Victoria, Australia, (Ba0.47K0.04Na0.02)(Fe3.97Al0.03)[(As0.72P0.28)O4]3(OH)4•2.52H2O, is cubic, space group P43m, a 7.942(1) Å, Z = 1, R = 0.089. Bariopharmacosiderite-Q, from the Sunny Corner mine, Sunny Corner, New South Wales, Australia, Ba0.5Fe4(OH)4(AsO4)3•6.16H2O, is tetragonal, space group P42m, a 7.947(1), c 8.049(2) Å, Z = 1, R = 0.050. In the cubic polymorph, Ba ions are disordered over all faces of the unit cell, whereas in the tetragonal polymorph, Ba ions are centered on the 001 face.
    [Show full text]
  • Mineralogy and Crystal Structure of Bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe Nanoclusters Containing Fe3+ in Trigonal Prismatic Coordination
    American Mineralogist, Volume 92, pages 1630–1639, 2007 Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination JOËL BRUGGER,1,* NICOLAS MEISSER,2 SERGEY KRIVOVICHEV,3 THOMAS ARMBRUSTER,4 AND GEORGES FAVREAU5 1Department of Geology and Geophysics, Adelaide University, North Terrace, SA-5001 Adelaide, Australia and South Australian Museum, North Terrace, SA-5000 Adelaide, Australia 2Musée Géologique Cantonal and Laboratoire des Rayons-X, Institut de Minéralogie et Géochimie, UNIL-Anthropole, CH-1015 Lausanne- Dorigny, Switzerland 3Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia 4Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland 5421 Avenue Jean Monnet, 13090 Aix-en-Provence, France ABSTRACT Bouazzerite, Bi6(Mg,Co)11Fe14[AsO4]18O12(OH)4(H2O)86, is a new mineral occurring in “Filon 7” at the Bou Azzer mine, Anti-Atlas, Morocco. Bouazzerite is associated with quartz, chalcopyrite, native gold, erythrite, talmessite/roselite-beta, Cr-bearing yukonite, alumopharmacosiderite, powellite, and a blue-green earthy copper arsenate related to geminite. The mineral results from the weathering of a Va- riscan hydrothermal As-Co-Ni-Ag-Au vein. The Bou Azzer mine and the similarly named district have produced many outstanding mineral specimens, including the world’s best erythrite and roselite. Bouazzerite forms monoclinic prismatic {021} crystals up to 0.5 mm in length. It has a pale 3 apple green color, a colorless streak, and is translucent with adamantine luster. dcalc is 2.81(2) g/cm (from X-ray structure refi nement).
    [Show full text]
  • Villyaellenite (Mn, Ca)Mn2(Aso3oh)2(Aso4)2(H2O)4
    Villyaellenite (Mn, Ca)Mn2(AsO3OH)2(AsO4)2(H2O)4 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular on {100}, to prismatic along [001], showing {100}, {110}, {011}, {010}, {101}, and {001}, to 4 cm; in rosettes and radial aggregates. Physical Properties: Cleavage: Good on {100}. Hardness = ∼4 D(meas.) = 3.20-3.69 D(calc.) = 3.339 Optical Properties: Transparent. Color: Pale rose-red, orange-pink, colorless; colorless in transmitted light. Streak: White. Luster: Vitreous. Optical Class: Biaxial (-). Pleochroism: Moderate; X = very pale orange-pink; Y = exceedingly pale orange-pink; Z = pale orange-pink. Orientation: X = b; Y ∧ c = 30°-40°. Absorption: Z >> X > Y. α = 1.660-1.713 β = 1.670-1.723 γ = 1.676-1.729 2V(meas.) = 70.5°-76° 2V(calc.) = 75°-75.6° Cell Data: Space Group: C2/c. a = 18.400(2) b = 9.4778(10) c = 9.9594(12) β = 96.587(3)° Z = 4 X-ray Powder Pattern: Sainte-Marie-aux-Mines, France. 3.297 (100), 8.476 (90), 3.132 (60), 4.606 (50), 4.761 (40), 3.811 (40), 3.025 (40) Chemistry: (1) (2) As2O5 52.99 50.6 FeO 0.1 MnO 22.40 36.2 ZnO 2.9 CaO 13.58 0.5 H2O 11.42 9.9 Total 100.39 100.2 (1) Sainte-Marie-aux-Mines, France; by electron microprobe, total Mn as MnO, H2O by TGA; 2+ reducing H2O to 10.7% by analogy to other group members, corresponds to (Mn 2.74Ca2.10)Σ=4.84 (H2O)4(AsO3OH)2.31(AsO4)1.69.
    [Show full text]
  • The Origins of Color in Minerals Four Distinct Physical Theories
    American Mineralogist, Volume 63. pages 219-229, 1978 The origins of color in minerals KURT NASSAU Bell Laboratories Murray Hill, New Jersey 07974 Abstract Four formalisms are outlined. Crystal field theory explains the color as well as the fluores- cence in transition-metal-containing minerals such as azurite and ruby. The trap concept, as part of crystal field theory, explains the varying stability of electron and hole color centers with respect to light or heat bleaching, as well as phenomena such as thermoluminescence. The molecular orbital formalism explains the color of charge transfer minerals such as blue sapphire and crocoite involving metals, as well as the nonmetal-involving colors in lazurite, graphite and organically colored minerals. Band theory explains the colors of metallic minerals; the color range black-red-orange- yellow-colorless in minerals such as galena, proustite, greenockite, diamond, as well as the impurity-caused yellow and blue colors in diamond. Lastly, there are the well-known pseudo- chromatic colors explained by physical optics involving dispersion, scattering, interference, and diffraction. Introduction The approach here used is tutorial in nature and references are given for further reading or, in some Four distinct physical theories (formalisms) are instances, for specific examples. Color illustrations of required for complete coverage in the processes by some of the principles involved have been published which intrinsic constituents, impurities, defects, and in an earlier less technical version (Nassau, 1975a). specific structures produce the visual effects we desig- Specific examples are given where the cause of the nate as color. All four are necessary in that each color is reasonably well established, although reinter- provides insights which the others do not when ap- pretations continue to appear even in materials, such plied to specific situations.
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 96, pages 1654–1661, 2011 New Mineral Names* PAULA C. PIILONEN,1,† RALPH ROWE,1 GLENN POIRIER,1 AND KIMBERLY T. TAIT2 1Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2Department of Natural History, Royal Ontario Museum,100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada NEW MINERALS The streak is white and the Mohs hardness is estimated to be about 1½. Thin crystal fragments are flexible, but not elastic. The fracture is irregular and there are three cleavage directions: {001} AFMITE* perfect, {010} and {110} good. The mineral is non-fluorescent A.R. Kampf, S.J. Mills, G.R Rossman, I.M. Steele, J.J. Pluth, under all wavelengths of ultraviolet radiation. The density mea- sured by sink-float in aqueous solution of sodium polytungstate and G. Favreau (2011) Afmite, Al3(OH)4(H2O)3(PO4) is 2.39(3) g/cm3. The calculated density, based on the empirical (PO3OH)·H2O, a new mineral from Fumade, Tarn, France: de- 3 scription and crystal structure. Eur. J. Mineral., 23, 269–277. formula and single-crystal cell, is 2.391 g/cm and that for the ideal formula is 2.394 g/cm3. Afmite is found at Fumade, Castelnau-de-Brassac, Tarn, Electron microprobe analyses provided Al2O3 40.20 and France (43°39′30″N, 2°29′58″E). The phosphates occur in P2O5 38.84 wt% and CHN analyses provided H2O 25.64 wt%, fractures and solution cavities in shale/siltstone exposed in total 103.68 wt%.
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]