Dietary Sphingolipids Contribute to Health Via Intestinal Maintenance

Total Page:16

File Type:pdf, Size:1020Kb

Dietary Sphingolipids Contribute to Health Via Intestinal Maintenance International Journal of Molecular Sciences Review Dietary Sphingolipids Contribute to Health via Intestinal Maintenance Shinji Yamashita 1, Mikio Kinoshita 1,* and Teruo Miyazawa 2 1 Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; [email protected] 2 Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-155-49-5545 Abstract: As sphingolipids are constituents of the cell and vacuole membranes of eukaryotic cells, they are a critical component acquired from our daily diets. In the present review, we highlight the knowledge regarding how dietary sphingolipids affect our health, particularly our intestinal health. Animal- and plant-derived foods contain, respectively, sphingomyelin (SM) and glucosylce- ramide (GlcCer) as their representative sphingolipids, and the sphingoid base as a specific structure of sphingolipids also differs depending upon the source and class. For example, sphingosine is predominant among animal sphingolipids, and tri-hydroxy bases are present in free ceramide (Cer) from plants and fungi. Dietary sphingolipids exhibit low absorption ratios; however, they possess various functions. GlcCer facilitates improvements in intestinal impairments, lipid metabolisms, and skin disorders, and SM can exert both similar and different effects compared to those elicited by GlcCer. We discuss the digestion, absorption, metabolism, and function of sphingolipids while focused on the structure. Additionally, we also review old and new classes in the context of current advancements in analytical instruments. Citation: Yamashita, S.; Kinoshita, M.; Miyazawa, T. Dietary Keywords: ceramide; glucosylceramide; inflammation; intestine; sphingomyelin; sphingosine Sphingolipids Contribute to Health via Intestinal Maintenance. Int. J. Mol. Sci. 2021, 22, 7052. https://doi.org/ 10.3390/ijms22137052 1. Introduction The intestine digests food materials and absorbs nutrients and water and is also Academic Editor: Paola Giussani deeply implicated in human health maintenance via the immune and nervous systems [1]. However, intestinal impairments, such as colon cancer and inflammatory bowel disease Received: 15 June 2021 (IBD), are becoming increasingly problematic pathologies that affect both sexes world- Accepted: 26 June 2021 wide. Despite advances in the diagnosis and treatment of these diseases, their incidence Published: 30 June 2021 rates have steadily increased in East Asian countries, including Japan, and their incidence rates in Western countries also remain high [2,3]. Epidemiological studies indicate that Publisher’s Note: MDPI stays neutral intestinal impairments are strongly associated with diet [4], and dietary compounds di- with regard to jurisdictional claims in published maps and institutional affil- rectly interact with the colonic epithelium cells and may affect growth, differentiation, iations. and cell death within the tissue [5]. Endogenous sphingolipids are known to play key roles in inflammation-related diseases, including intestinal impairment [6,7]. Although dietary sphingolipids are also believed to be implicated in these diseases, food-derived sphingolipids differ from endogenous sphingolipids in regard to their different structures among plants, fungi, and invertebrates and their differing routes into the body, which can Copyright: © 2021 by the authors. include digestion and absorption [8]. In this review, we introduce sphingolipids as foods Licensee MDPI, Basel, Switzerland. or supplements that can facilitate various functions, such as influencing intestinal health, This article is an open access article distributed under the terms and and we focus primarily on sphingolipid structure in this context. conditions of the Creative Commons 2. Diversity of Sphingolipid Classes and Base Composition in Foods Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Sphingolipids are primarily located within the cell and vacuole membranes of most 4.0/). eukaryotes and some prokaryotes, and, based on this, we consume sphingolipids daily in Int. J. Mol. Sci. 2021, 22, 7052. https://doi.org/10.3390/ijms22137052 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 19 Int. J. Mol. Sci. 2021, 22, 7052 2. Diversity of Sphingolipid Classes and Base Composition in Foods 2 of 18 Sphingolipids are primarily located within the cell and vacuole membranes of most eukaryotes and some prokaryotes, and, based on this, we consume sphingolipids daily in our diets. S Sphingolipidsphingolipids present in most foods primarily exist as complexcomplex sphingolipidssphingolipids thatthat areare composedcomposed of of a sphingoida sphingoid base base (SB) with(SB) anwith amide-linked an amide fatty-linked acid fatty (i.e., acid ceramide, (i.e., ceramide,Cer) and aCer) polar and head a polar group, head rather group than, rather a free than Cer a [ 8free]. Throughout Cer [8]. Throughout nature, there nature, are therediverse are compositions diverse compositions of sphingolipid of sphingolipid classes and classes sphingoid and sphingoid bases (Figure bases1). (Figure 1). Figure 1. Structures of sphingolipids and diversity of sphingoid bases depend on food sources. Abbreviations: C, carbon number; c, cis; d, dihydroxy; h,h, α-hydroxy;-hydroxy; Me, methyl;methyl; tt,, transtrans;; t,t, trihydroxy.trihydroxy. SSphingolipidsphingolipids are typically classified as neutralneutral andand acidicacidic sphingolipids.sphingolipids. Neutral sphingolipid classes in animal-derived foods such as meats and egg yolk primarily con- sphingolipid classes in animal-derived foods such as meats and egg yolk primarily con- sist of sphingomyelin (SM; a phosphocholine as the polar head group) and also include sist of sphingomyelin (SM; a phosphocholine as the polar head group) and also include glucosylceramide (GlcCer; a glucose) and Cer, while the acidic sphingolipid classes are glucosylceramide (GlcCer; a glucose) and Cer, while the acidic sphingolipid classes are gangliosides that contain more than one sialic acid within the sugar chain [9,10]. Milk and gangliosides that contain more than one sialic acid within the sugar chain [9,10]. Milk dairy products contain GlcCer and lactosylceramide (LacCer) in addition to SM, and they and dairy products contain GlcCer and lactosylceramide (LacCer) in addition to SM, and are rich in gangliosides [10,11]. The sphingolipid composition of offal (variety meats, e.g., they are rich in gangliosides [10,11]. The sphingolipid composition of offal (variety brain, spinal cord, liver, and intestine) is unique. For example, the brain and spinal cord, meats, e.g., brain, spinal cord, liver, and intestine) is unique. For example, the brain and both of which are abundant in sphingolipids, contain large amounts of galactocylceramide spinal cord, both of which are abundant in sphingolipids, contain large amounts of (GalCer) and sulfatides that are represented by GalCer 3-sulfate. The neutral sphingolipids galactocylceramide (GalCer) and sulfatides that are represented by GalCer 3-sulfate. The from fish-derived foods are primarily SM and monoglycosylceramides (e.g., GalCer and nGlcCer)eutral sphingolipids [12,13], while from foods fish from-derived invertebrates foods are such primarily as Mollusca SM and contain monoglycosylcer- Cer phospho- amidesethanolamine (e.g., GalCer and Cer and 2-aminoethylphosphonate GlcCer) [12,13], while foods (CAEP) from instead invertebrates of SM [14 such]. The as polarMol- luscahead groupcontain of Cer CAEP phosphoethanolamine possesses a C-P bond thatand consistsCer 2-aminoethylphosphonate of a phosphorus atom that (CAEP) is directly in- steadbound of to SM a carbon [14]. The atom. polar In contrast,head group neutral of CAEP sphingolipid possesses classes a C-P present bond that in foods consists derived of a from plants are primary composed of GlcCer and Cer, and rice and wheat grains contain small amounts of oligo-glycosyl Cer that possess sugar chains that are composed of glucose and mannose [15]. Plant acidic sphingolipids comprise inositol phosphoceramide (IPC) and glycosyl IPC (GIPC), both of which are markedly more abundant than is GlcCer [16]. Foods Int. J. Mol. Sci. 2021, 22, 7052 3 of 18 derived from fungi such as mold and mushrooms possess GlcCer, GalCer, and LacCer as neutral classes and IPC and GIPC as acidic classes [17]. Although general eukaryotes can possess higher or lower levels of GlcCer, yeasts (Saccharomyces cerevisiae) used for panary fermentation and sake brewing do not contain GlcCer, while yeasts contain Cer, IPC, and GIPC [18]. Additionally, sphingolipids do not exist in general prokaryotes, but Cer and the specific derivatives, such as Cer glucuronide, are present in certain prokaryotes, including acetic acid bacteria (Acetobacter)[19–21]. Fermented foods such as sake lees, a by-product of sake (rice wine) brewing, contain markedly high levels of free Cer and free SBs [22,23]. In regard to animal sphingoid bases, trans-4-sphingenine (sphingosine, d18:14t) is the most prevalent, and sphinganine (d18:0) and 4-hydroxysphinganine (phytosphingosine, t18:0) also occur frequently in small amounts (Table1). However, the small intestine, kidney, and skin, which exhibit C4-hydroxylase activity, are abundant in t18:0 [24]. Plant sphin- golipids exhibit a highly diverse SB composition due to having
Recommended publications
  • Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update for 2011–2012
    ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2011–2012 David J. Harvey* Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK Received 19 June 2014; accepted 15 January 2015 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/mas.21471 This review is the seventh update of the original article published text. As the review is designed to complement the earlier work, in 1999 on the application of MALDI mass spectrometry to the structural formulae, etc. that were presented earlier are not analysis of carbohydrates and glycoconjugates and brings repeated. However, a citation to the structure in the earlier work coverage of the literature to the end of 2012. General aspects is indicated by its number with a prefix (i.e., 1/x refers to such as theory of the MALDI process, matrices, derivatization, structure x in the first review and 2/x to structure x the second). MALDI imaging, and fragmentation are covered in the first part Books, general reviews, and review-type articles directly of the review and applications to various structural types concerned with, or including, MALDI analysis of carbohydrates constitute the remainder. The main groups of compound are and glycoconjugates to have been published during the review oligo- and poly-saccharides, glycoproteins, glycolipids, glyco- period are listed in Table 1. Reviews relating to more specific sides, and biopharmaceuticals. Much of this material is presented aspects of MALDI analysis are listed in the appropriate sections. in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and II.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • 次世代ポストゲノム・ANNUAL REPORT2011.Indd
    Frontier Research Center for Post-genome Science and Technology Faculty of Advanced Life Science Hokkaido University 2011 ANNUAL REPORT は じ め に Introduction ごあいさつ/Message from the Director 02 次世代ポストゲノムとは/What's the "Frontier p s t" 04 沿革/Chronology 05 研 究 活 動 Research Activities 次世代ポストゲノム研究概要/Highlights of the Frontier P S T 06 ・創薬科学基盤イノベーションハブ 08 Biomedical Science & Drug Discovery Hub ・ポストゲノムタンパク質解析イノベーションハブ 12 Protein Structure Hub ・フォトバイオイメージングイノベーションハブ 14 Bio-Imaging Hub ・バイオミクスイノベーションハブ 15 Biomics Hub ・基盤支援・産学連携部門 17 Division for Supporting Basic Science & Industrial Cooperation 研究セミナー/Seminar 19 研究プロジェクト/Project 22 研 究 業 績 Research Achievement ・創薬科学基盤イノベーションハブ 28 Biomedical Science & Drug Discovery Hub ・ポストゲノムタンパク質解析イノベーションハブ 34 Protein Structure Hub ・フォトバイオイメージングイノベーションハブ 37 Bio-Imaging Hub ・バイオミクスイノベーションハブ 39 Biomics Hub ・基盤支援・産学連携部門 41 Division for Supporting Basic Science & Industrial Cooperation H23年度に受入のあった資金 Sources of Research Funding For 2011 1)・外部資金/National Research Funding 48 ・受託研究等/Government Projects 48 ・民間等からの研究資金/Private Research Funding 51 ・寄付金受入/Donations 54 2)科学研究費補助金/Grant-in-aid for Scientific Research 55 視察一覧・組織図/Visiting to Frontier-PST/Organization 60 構成員一覧/Staff List of Frontier-PST 61 ごあいさつ 北海道大学では、21世紀における大学の機構改革、特に大学院の組織改革とし て、学院・研究院制度が導入されつつあり、これまでの部局の壁を超えた新しい 生命科学の教育、研究をめざす融合型組織として、北海道大学大学院生命科学院 と、その研究の中核組織である北海道大学大学院先端生命科学研究院が、2006年 4月から新しく発足し、次世代ポストゲノム研究センターは先端生命科学研究院 の中核的付属施設として同時に併設されました。6年経過した現在、大学の中期 目標設定の中で、センターでは、先端生命科学研究院における応用開発という面 も含めて、北大における生命科学研究における中核的機能を果たしながら世界的 な研究拠点を目指して研究を更に充実・発展させようとしています。
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Draft Genome of Thermomonospora Sp. CIT 1 (Thermomonosporaceae) and in Silico Evidence of Its Functional Role in Filter Cake Biomass Deconstruction
    1 Genetics and Molecular Biology Suplementary material to: Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction Table S3 - Identifications of enzymes with activity on carbohydrate structures present in the draft genome CIT 1 recovered from metagenomic sequencing of filter cake. Predictions were performed with dbCAN online, following for blastp confirmation against the non-redundant NCBI protein database of the occurrence of predicted protein-like sequence deposition. Search results for dbCAN conserved domains BLASTP RESULTS ORF CAZy QUERY E- IDENTIT LENGTH ID CAZy ENZYME NAME (NCBI) ACCESSION FAMILY COVER VALUE Y 747 AA2.hmm peroxidase (EC 1.11.1.-) catalase/peroxidase HPI 100 0.00E+00 100 WP_012852289 glucose-methanol-choline 786 AA3.hmm glucose-methanol-choline (GMC) 100 0.00E+00 100 ACY97563 oxidoreductase mycofactocin system GMC family 520 AA3.hmm glucose-methanol-choline (GMC) 99 0.00E+00 99 WP_012852714 oxidoreductase MftG 582 AA3.hmm glucose-methanol-choline (GMC) GMC family oxidoreductase 100 0.00E+00 99 WP_012854558 531 AA3_2.hmm glucose-methanol-choline (GMC) choline dehydrogenase 100 0.00E+00 100 WP_012854223 533 AA4.hmm vanillyl-alcohol oxidase (EC 1.1.3.38) FAD-binding oxidoreductase 99 0.00E+00 99 WP_012852156 NAD(P)H:quinone oxidoreductase 4.00E- 209 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 100 100 WP_012850533 type IV 152 187 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) NAD(P)H-dependent oxidoreductase 100 9.00E-86 69 WP_067443322 6.00E- 152 AA6.hmm 1,4-benzoquinone reductase (EC.
    [Show full text]
  • Supplemental Table 7. Every Significant Association
    Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive
    [Show full text]
  • Suplementary Material To: Draft Genome of Thermomonospora Sp. CIT 1 (Thermomonosporaceae) and in Silico Evidence of Its Function
    1 Genetics and Molecular Biology Suplementary material to: Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction Table S4 - Identifications of enzymes with activity on carbohydrate structures present in the circular genome of Thermomonospora curvata DSM 43183 (Thermomonosporaceae). Predictions were performed with dbCAN online, following for blastp confirmation against the non-redundant NCBI protein database of the occurrence of predicted protein-like sequence deposition. Search results for dbCAN conserved domains BLASTP RESULTS ORF CAZy QUERY IDENTIT LENGTH ID CAZy ENZYME NAME (NCBI) E-VALUE ACCESSION FAMILY COVER Y mycofactocin system GMC family 517 AA3.hmm glucose-methanol-choline (GMC) 100 0.00E+00 100 WP_012852714 oxidoreductase MftG 528 AA4.hmm vanillyl-alcohol oxidase (EC 1.1.3.38) FAD-binding oxidoreductase 99 0.00E+00 76 WP_067912508 NAD(P)H dehydrogenase 209 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 99 4.00E-128 88 SEG76937 (quinone) NAD(P)H-dependent FMN 186 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 100 2.00E-84 70 SEG82383 reductase glycolate oxidase FAD binding 411 AA7.hmm glycolate oxidase (EC 1.1.3.15) 98 0.00E+00 77 SEG60993 subunit 482 AA7.hmm glycolate oxidase (EC 1.1.3.15) glycolate oxidase 100 0.00E+00 88 SEG60983 459 AA7.hmm 1- FAD-binding oxidoreductase 99 0.00E+00 72 WP_091378734 lytic polysaccharide monooxygenases 212 AA10.hmm chitin-binding protein 100 7.00E-86 73 WP_079318887 (LPMOs) 505 CBM35.hmm CBM35
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Cazymes Catalogue 2021
    cazymes 2021 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: 2021 NZYTech NZYTech 2 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: cazymes 3 4 2021 NZYTech NZYTech OVERVIEW 8 GLYCOSIDE HYDROLASES 10 Acetylgalactosaminidases Acetylglucosaminidases Agarases Amylases @ a glance Amylomaltases Arabinanases Arabinofuranosidases Arabinopyranosidases Arabinoxylanases Carrageenases Cellobiohydrolases Cellodextrinases Cellulases Chitinases Chitosanases Dextranases Fructanases Fructofuranosidases
    [Show full text]
  • Prevalence, Antimicrobial Susceptibility and Molecular
    Cloning functional expression and site-directed mutagenesis of thermostable xylanases from Geobacillus thermodenitrificans By Muhammad Irfan Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2016 Cloning functional expression and site-directed mutagenesis of thermostable xylanases from Geobacillus thermodenitrificans A thesis Submitted in the Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN MICROBIOLOGY By Muhammad Irfan Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2016 DECLARATION The material contained in this thesis is my original work and I have not presented any part of this thesis/work elsewhere for any other degree. Muhammad Irfan DEDICATED TO My Ammi and Abbu CONTENTS S. No. Title Page No. List of Abbreviations i List of Tables iii List of Figures iv Acknowledgements x Abstract xii Introduction 1 Aims and objectives 7 Review of Literature 8 2.1 Background 8 2.2 Xylan: An Overview 8 2.3 The Xylanolytic Complex 12 2.4 Xylanolytic Enzymes 13 2.4.1 Endo-1, 4-β-xylanase 13 2.4.2 β-D-Xylosidases 14 2.4.3 Acetylxylan esterase 14 2.4.4 Arabinase 15 2.4.5 α-Glucuronidase 15 2.4.6 Ferulic acid esterase and p-coumaric acid esterase 15 2.5 Synergism between the enzymes of the xylanolytic complex 16 2.6 Xylanase Distribution 16 2.7 Xylanases: multiplicity and multiple domains 17 2.8 Classification of xylanases 18 2.8.1 Glycoside hydrolase families 5, 7, 8, 10, 11 and 43 20 2.8.2 Glycoside hydrolase family 5 21 2.9 Extremophilic Xylanases 22 2.10 Thermophiles 22
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]