次世代ポストゲノム・ANNUAL REPORT2011.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update for 2011–2012
ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2011–2012 David J. Harvey* Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK Received 19 June 2014; accepted 15 January 2015 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/mas.21471 This review is the seventh update of the original article published text. As the review is designed to complement the earlier work, in 1999 on the application of MALDI mass spectrometry to the structural formulae, etc. that were presented earlier are not analysis of carbohydrates and glycoconjugates and brings repeated. However, a citation to the structure in the earlier work coverage of the literature to the end of 2012. General aspects is indicated by its number with a prefix (i.e., 1/x refers to such as theory of the MALDI process, matrices, derivatization, structure x in the first review and 2/x to structure x the second). MALDI imaging, and fragmentation are covered in the first part Books, general reviews, and review-type articles directly of the review and applications to various structural types concerned with, or including, MALDI analysis of carbohydrates constitute the remainder. The main groups of compound are and glycoconjugates to have been published during the review oligo- and poly-saccharides, glycoproteins, glycolipids, glyco- period are listed in Table 1. Reviews relating to more specific sides, and biopharmaceuticals. Much of this material is presented aspects of MALDI analysis are listed in the appropriate sections. in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and II. -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
Draft Genome of Thermomonospora Sp. CIT 1 (Thermomonosporaceae) and in Silico Evidence of Its Functional Role in Filter Cake Biomass Deconstruction
1 Genetics and Molecular Biology Suplementary material to: Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction Table S3 - Identifications of enzymes with activity on carbohydrate structures present in the draft genome CIT 1 recovered from metagenomic sequencing of filter cake. Predictions were performed with dbCAN online, following for blastp confirmation against the non-redundant NCBI protein database of the occurrence of predicted protein-like sequence deposition. Search results for dbCAN conserved domains BLASTP RESULTS ORF CAZy QUERY E- IDENTIT LENGTH ID CAZy ENZYME NAME (NCBI) ACCESSION FAMILY COVER VALUE Y 747 AA2.hmm peroxidase (EC 1.11.1.-) catalase/peroxidase HPI 100 0.00E+00 100 WP_012852289 glucose-methanol-choline 786 AA3.hmm glucose-methanol-choline (GMC) 100 0.00E+00 100 ACY97563 oxidoreductase mycofactocin system GMC family 520 AA3.hmm glucose-methanol-choline (GMC) 99 0.00E+00 99 WP_012852714 oxidoreductase MftG 582 AA3.hmm glucose-methanol-choline (GMC) GMC family oxidoreductase 100 0.00E+00 99 WP_012854558 531 AA3_2.hmm glucose-methanol-choline (GMC) choline dehydrogenase 100 0.00E+00 100 WP_012854223 533 AA4.hmm vanillyl-alcohol oxidase (EC 1.1.3.38) FAD-binding oxidoreductase 99 0.00E+00 99 WP_012852156 NAD(P)H:quinone oxidoreductase 4.00E- 209 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 100 100 WP_012850533 type IV 152 187 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) NAD(P)H-dependent oxidoreductase 100 9.00E-86 69 WP_067443322 6.00E- 152 AA6.hmm 1,4-benzoquinone reductase (EC. -
Supplemental Table 7. Every Significant Association
Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive -
Suplementary Material To: Draft Genome of Thermomonospora Sp. CIT 1 (Thermomonosporaceae) and in Silico Evidence of Its Function
1 Genetics and Molecular Biology Suplementary material to: Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction Table S4 - Identifications of enzymes with activity on carbohydrate structures present in the circular genome of Thermomonospora curvata DSM 43183 (Thermomonosporaceae). Predictions were performed with dbCAN online, following for blastp confirmation against the non-redundant NCBI protein database of the occurrence of predicted protein-like sequence deposition. Search results for dbCAN conserved domains BLASTP RESULTS ORF CAZy QUERY IDENTIT LENGTH ID CAZy ENZYME NAME (NCBI) E-VALUE ACCESSION FAMILY COVER Y mycofactocin system GMC family 517 AA3.hmm glucose-methanol-choline (GMC) 100 0.00E+00 100 WP_012852714 oxidoreductase MftG 528 AA4.hmm vanillyl-alcohol oxidase (EC 1.1.3.38) FAD-binding oxidoreductase 99 0.00E+00 76 WP_067912508 NAD(P)H dehydrogenase 209 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 99 4.00E-128 88 SEG76937 (quinone) NAD(P)H-dependent FMN 186 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 100 2.00E-84 70 SEG82383 reductase glycolate oxidase FAD binding 411 AA7.hmm glycolate oxidase (EC 1.1.3.15) 98 0.00E+00 77 SEG60993 subunit 482 AA7.hmm glycolate oxidase (EC 1.1.3.15) glycolate oxidase 100 0.00E+00 88 SEG60983 459 AA7.hmm 1- FAD-binding oxidoreductase 99 0.00E+00 72 WP_091378734 lytic polysaccharide monooxygenases 212 AA10.hmm chitin-binding protein 100 7.00E-86 73 WP_079318887 (LPMOs) 505 CBM35.hmm CBM35 -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
Cazymes Catalogue 2021
cazymes 2021 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: 2021 NZYTech NZYTech 2 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: cazymes 3 4 2021 NZYTech NZYTech OVERVIEW 8 GLYCOSIDE HYDROLASES 10 Acetylgalactosaminidases Acetylglucosaminidases Agarases Amylases @ a glance Amylomaltases Arabinanases Arabinofuranosidases Arabinopyranosidases Arabinoxylanases Carrageenases Cellobiohydrolases Cellodextrinases Cellulases Chitinases Chitosanases Dextranases Fructanases Fructofuranosidases -
Prevalence, Antimicrobial Susceptibility and Molecular
Cloning functional expression and site-directed mutagenesis of thermostable xylanases from Geobacillus thermodenitrificans By Muhammad Irfan Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2016 Cloning functional expression and site-directed mutagenesis of thermostable xylanases from Geobacillus thermodenitrificans A thesis Submitted in the Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN MICROBIOLOGY By Muhammad Irfan Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2016 DECLARATION The material contained in this thesis is my original work and I have not presented any part of this thesis/work elsewhere for any other degree. Muhammad Irfan DEDICATED TO My Ammi and Abbu CONTENTS S. No. Title Page No. List of Abbreviations i List of Tables iii List of Figures iv Acknowledgements x Abstract xii Introduction 1 Aims and objectives 7 Review of Literature 8 2.1 Background 8 2.2 Xylan: An Overview 8 2.3 The Xylanolytic Complex 12 2.4 Xylanolytic Enzymes 13 2.4.1 Endo-1, 4-β-xylanase 13 2.4.2 β-D-Xylosidases 14 2.4.3 Acetylxylan esterase 14 2.4.4 Arabinase 15 2.4.5 α-Glucuronidase 15 2.4.6 Ferulic acid esterase and p-coumaric acid esterase 15 2.5 Synergism between the enzymes of the xylanolytic complex 16 2.6 Xylanase Distribution 16 2.7 Xylanases: multiplicity and multiple domains 17 2.8 Classification of xylanases 18 2.8.1 Glycoside hydrolase families 5, 7, 8, 10, 11 and 43 20 2.8.2 Glycoside hydrolase family 5 21 2.9 Extremophilic Xylanases 22 2.10 Thermophiles 22 -
(12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides. -
All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA -
(12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.