Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update for 2011–2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enantioselektive Biotransformationen Zur Synthese Von Molekülen Mit
Untersuchung zur Produktion und gerichteten Immobilisierung einer Alginat Lyase aus Sphingomonas sp. A1 Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Herrn Dipl.-Biol. Christian Beyerodt geboren am 15.12.1982 in Halle an der Saale Halle (Saale) 2015 Gutachter/in: 1. Prof. Dr. Markus Pietzsch 2. Prof. Dr. Reinhard Neubert 3. Prof. Dr. Christoph Syldatk Tag der öffentlichen Verteidigung: 30.03.2016 2 Selbstständigkeitserklärung Hiermit erkläre ich, Christian Beyerodt, dass ich die vorliegende Arbeit - mit Ausnahme der aufgeführten Personen, Unterlagen bzw. Literaturstellen - selbstständig und ohne fremde Hilfe angefertigt habe, _________________ Halle, Datum 3 Danksagung Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitar- beiter in der Arbeitsgruppe „Aufarbeitung biotechnischer Produkte“ des Institutes für Phar- mazie an der Martin-Luther-Universität Halle-Wittenberg. Viele Menschen haben mich wäh- rend dieser Zeit unterstützt und dazu beigetragen, dass ich diese Zeit der Promotion als ei- nen positiven Lebensabschnitt in Erinnerung behalten werde. Diesen Personen möchte ich im Folgenden danken. Zuerst möchte ich mich bei Prof. Dr. Markus Pietzsch für das entgegengebrachte Vertrauen, mir das Thema zu überlassen, bedanken. Auch danke ich für die vielen konstruktiven Dis- kussionen, Kritiken und Hilfestellungen, welche diese Arbeit erst ermöglichten. Weiterhin danke ich der Firma Lanxess, im speziellen Frau Dr. Hermsdorf und Herrn Dr. Schellenberg. Das interdisziplinäre Projekt wurde die Grundlage für meine Forschungen. Ich danke natürlich auch der gesamten Arbeitsgruppe „AG-Pietzsch“ für die schöne Zeit und die zahlreichen Aktivitäten neben der Arbeit. Die Sommerfeste waren immer ein riesen Spaß. -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Glycoside Hydrolase Dish from Desulfovibrio Vulgaris Degrades The
Glycoside Hydrolase DisH from Desulfovibrio vulgaris Degrades the N-Acetylgalactosamine Component of Diverse Biofilms Lei Zhu1, Venkata G. Poosarla1, Sooyeon Song1, Thammajun L. Wood1, Daniel S. Miller3, Bei Yin3, and Thomas K. Wood1, 2* 1Department of Chemical Engineering and 2Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 3Dow Chemical Company, Collegeville, PA, 19426 *To whom correspondence should be addressed: [email protected] Running title: D. vulgaris DisH disperses its biofilm This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.14064 This article is protected by copyright. All rights reserved. SIGNIFICANCE The global costs of corrosion are more than $2.5 trillion every year (3.4% of the global gross domestic product), and a large part of corrosion (30%) is microbiologically influenced corrosion (MIC), which affects oil production, drinking water systems, and pipelines. MIC is commonly caused by sulfate- reducing bacteria (SRB) biofilms, and Desulfovibrio vulgaris is the model organism. The biofilm matrix of D. vulgaris consists of proteins and polysaccharides of mannose, fucose, and N-acetylgalactosamine (GalNAc). However, little is known about how to control its biofilm formation. Since bacteria must degrade their biofilm to disperse, in this work, we identified and then studied predicted secreted glycoside hydrolases from D. vulgaris. We show here that DisH (DVU2239, dispersal hexosaminidase), a previously uncharacterized protein, is an N-acetyl-β-D-hexosaminidase that disperses the D. -
次世代ポストゲノム・ANNUAL REPORT2011.Indd
Frontier Research Center for Post-genome Science and Technology Faculty of Advanced Life Science Hokkaido University 2011 ANNUAL REPORT は じ め に Introduction ごあいさつ/Message from the Director 02 次世代ポストゲノムとは/What's the "Frontier p s t" 04 沿革/Chronology 05 研 究 活 動 Research Activities 次世代ポストゲノム研究概要/Highlights of the Frontier P S T 06 ・創薬科学基盤イノベーションハブ 08 Biomedical Science & Drug Discovery Hub ・ポストゲノムタンパク質解析イノベーションハブ 12 Protein Structure Hub ・フォトバイオイメージングイノベーションハブ 14 Bio-Imaging Hub ・バイオミクスイノベーションハブ 15 Biomics Hub ・基盤支援・産学連携部門 17 Division for Supporting Basic Science & Industrial Cooperation 研究セミナー/Seminar 19 研究プロジェクト/Project 22 研 究 業 績 Research Achievement ・創薬科学基盤イノベーションハブ 28 Biomedical Science & Drug Discovery Hub ・ポストゲノムタンパク質解析イノベーションハブ 34 Protein Structure Hub ・フォトバイオイメージングイノベーションハブ 37 Bio-Imaging Hub ・バイオミクスイノベーションハブ 39 Biomics Hub ・基盤支援・産学連携部門 41 Division for Supporting Basic Science & Industrial Cooperation H23年度に受入のあった資金 Sources of Research Funding For 2011 1)・外部資金/National Research Funding 48 ・受託研究等/Government Projects 48 ・民間等からの研究資金/Private Research Funding 51 ・寄付金受入/Donations 54 2)科学研究費補助金/Grant-in-aid for Scientific Research 55 視察一覧・組織図/Visiting to Frontier-PST/Organization 60 構成員一覧/Staff List of Frontier-PST 61 ごあいさつ 北海道大学では、21世紀における大学の機構改革、特に大学院の組織改革とし て、学院・研究院制度が導入されつつあり、これまでの部局の壁を超えた新しい 生命科学の教育、研究をめざす融合型組織として、北海道大学大学院生命科学院 と、その研究の中核組織である北海道大学大学院先端生命科学研究院が、2006年 4月から新しく発足し、次世代ポストゲノム研究センターは先端生命科学研究院 の中核的付属施設として同時に併設されました。6年経過した現在、大学の中期 目標設定の中で、センターでは、先端生命科学研究院における応用開発という面 も含めて、北大における生命科学研究における中核的機能を果たしながら世界的 な研究拠点を目指して研究を更に充実・発展させようとしています。 -
The Efficacy of Lyticase and Β-Glucosidase Enzymes on Biofilm
Banar et al. BMC Microbiology (2019) 19:291 https://doi.org/10.1186/s12866-019-1662-9 RESEARCH ARTICLE Open Access The efficacy of lyticase and β-glucosidase enzymes on biofilm degradation of Pseudomonas aeruginosa strains with different gene profiles Maryam Banar1, Mohammad Emaneini1, Reza Beigverdi1, Rima Fanaei Pirlar1, Narges Node Farahani1, Willem B. van Leeuwen2 and Fereshteh Jabalameli1* Abstract Background: Pseudomonas aeruginosa is a nosocomial pathogen that causes severe infections in immunocompromised patients. Biofilm plays a significant role in the resistance of this bacterium and complicates the treatment of its infections. In this study, the effect of lyticase and β-glucosidase enzymes on the degradation of biofilms of P. aeruginosa strains isolated from cystic fibrosis and burn wound infections were assessed. Moreover, the decrease of ceftazidime minimum biofilm eliminating concentrations (MBEC) after enzymatic treatment was evaluated. Results: This study demonstrated the effectiveness of both enzymes in degrading the biofilms of P. aeruginosa.In contrast to the lyticase enzyme, β-glucosidase reduced the ceftazidime MBECs significantly (P < 0.05). Both enzymes had no cytotoxic effect on the A-549 human lung carcinoma epithelial cell lines and A-431 human epidermoid carcinoma cell lines. Conclusion: Considering the characteristics of the β-glucosidase enzyme, which includes the notable degradation of P. aeruginosa biofilms and a significant decrease in the ceftazidime MBECs and non-toxicity for eukaryotic cells, this enzyme can be a promising therapeutic candidate for degradation of biofilms in burn wound patients, but further studies are needed. Keywords: Pseudomonas aeruginosa, β-Glucosidase, Lyticase, Biofilm Background patients and associated with chronic infections and antibiotic Pseudomonas aeruginosa is a nosocomial pathogen that resistance [4, 8]. -
Biofilms As Promoters of Bacterial Antibiotic Resistance and Tolerance
antibiotics Review Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance Cristina Uruén 1,† , Gema Chopo-Escuin 1,†, Jan Tommassen 2 , Raúl C. Mainar-Jaime 1 and Jesús Arenas 1,* 1 Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Miguel Servet, 177, 50017 Zaragoza, Spain; [email protected] (C.U.); [email protected] (G.C.-E.); [email protected] (R.C.M.-J.) 2 Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth condi- tions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
ROLE of in VIVO-INDUCED GENES ILVI and HFQ in the SURVIVAL and VIRULENCE of ACTINOBACILLUS PLEUROPNEUMONIAE By
ROLE OF IN VIVO-INDUCED GENES ILVI AND HFQ IN THE SURVIVAL AND VIRULENCE OF ACTINOBACILLUS PLEUROPNEUMONIAE By Sargurunathan Subashchandrabose A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Comparative Medicine and Integrative Biology 2011 ABSTRACT ROLE OF IN VIVO-INDUCED GENES ILVI AND HFQ IN THE SURVIVAL AND VIRULENCE OF ACTINOBACILLUS PLEUROPNEUMONIAE By Sargurunathan Subashchandrabose Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a contagious and often fatal disease of pigs. Infection with this bacterium leads to the development of a fulminant pleuropneumonia resulting in severe damage to the lungs. A. pleuropneumoniae genes that are up-regulated during the infection of pig lungs were previously identified in our laboratory and designated as in vivo-induced genes. The role of two such in vivo-induced genes, ilvI and hfq, in the pathobiology of A. pleuropneumoniae is the subject of this dissertation. The gene ilvI encodes an enzyme involved in the biosynthesis of branched-chain amino acids (BCAAs). The leucine-responsive regulatory protein (Lrp) is a transcriptional regulator of the ilvIH operon. BCAA biosynthetic genes are associated with virulence in pathogens infecting the respiratory tract and blood stream. Also, twenty five percent of the A. pleuropneumoniae in vivo-induced genes were up-regulated under BCAA limitation, suggesting that these BCAAs may be found at limiting concentrations in certain sites of the mammalian body such as the respiratory tract. The concentration of amino acids in the porcine pulmonary epithelial lining fluid was determined and BCAAs were found at limiting concentration in the respiratory tract. -
Annuaire Officiel De L'union Europøenne
Donnes à jour au 23 dcembre 2004 Annuaire officiel de l’Union europenne 2005 UNION EUROPÉENNE Avis au lecteur Cette publication parat une fois par an, en trois langues: allemand, anglais et franÅais. Son contenu reprend les organigrammes des institutions, organes, agences et organismes de l’Union europenne jusqu’au niveau des responsables des entits oprationnelles de base. Une version lectronique, actualise rgulirement, peut Þtre consulte sur l’internet via le serveur Europa (http://europa.eu.int/idea). En raison du nombre et de la complexit des intituls des fonctions à grer dans les diffrentes versions linguistiques, il ne nous est pas possible, pour l’instant, de prendre en compte les variantes fminin/masculin de celles-ci. Nous avons donc opt pour une dnomination unique à considrer comme neutre. Europe Direct est un service destin à vous aider à trouver des rponses aux questions que vous vous posez sur l’Union europenne. Un nouveau numro unique gratuit: 000 800 6 7 8 9 10 11 De nombreuses autres informations sur l’Union europenne sont disponibles sur l’internet via le serveur Europa (http://europa.eu.int). Une fiche bibliographique figure à la fin de l’ouvrage. Luxembourg: Office des publications officielles des Communauts europennes, 2005 ISBN 92-78-40259-1 Communauts europennes, 2005 Reproduction autorise, moyennant mention de la source Printed in Luxembourg IMPRIM SUR PAPIER BLANCHI SANS CHLORE Table des matires Prsentation des institutions de l’Union europenne .............................. V Renseignements pratiques ...................................................... XVII ˆ Adresses postales des institutions . ........................................ XIX ˆ Liste des btiments . ........................................................ XXIII ˆ Plans d’accs aux btiments . -
Draft Genome of Thermomonospora Sp. CIT 1 (Thermomonosporaceae) and in Silico Evidence of Its Functional Role in Filter Cake Biomass Deconstruction
1 Genetics and Molecular Biology Suplementary material to: Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction Table S3 - Identifications of enzymes with activity on carbohydrate structures present in the draft genome CIT 1 recovered from metagenomic sequencing of filter cake. Predictions were performed with dbCAN online, following for blastp confirmation against the non-redundant NCBI protein database of the occurrence of predicted protein-like sequence deposition. Search results for dbCAN conserved domains BLASTP RESULTS ORF CAZy QUERY E- IDENTIT LENGTH ID CAZy ENZYME NAME (NCBI) ACCESSION FAMILY COVER VALUE Y 747 AA2.hmm peroxidase (EC 1.11.1.-) catalase/peroxidase HPI 100 0.00E+00 100 WP_012852289 glucose-methanol-choline 786 AA3.hmm glucose-methanol-choline (GMC) 100 0.00E+00 100 ACY97563 oxidoreductase mycofactocin system GMC family 520 AA3.hmm glucose-methanol-choline (GMC) 99 0.00E+00 99 WP_012852714 oxidoreductase MftG 582 AA3.hmm glucose-methanol-choline (GMC) GMC family oxidoreductase 100 0.00E+00 99 WP_012854558 531 AA3_2.hmm glucose-methanol-choline (GMC) choline dehydrogenase 100 0.00E+00 100 WP_012854223 533 AA4.hmm vanillyl-alcohol oxidase (EC 1.1.3.38) FAD-binding oxidoreductase 99 0.00E+00 99 WP_012852156 NAD(P)H:quinone oxidoreductase 4.00E- 209 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) 100 100 WP_012850533 type IV 152 187 AA6.hmm 1,4-benzoquinone reductase (EC. 1.6.5.6) NAD(P)H-dependent oxidoreductase 100 9.00E-86 69 WP_067443322 6.00E- 152 AA6.hmm 1,4-benzoquinone reductase (EC. -
Enzyme Dynamics of Biofilm-Breaking Dispersin B
Enzyme Dynamics of Biofilm-Breaking Dispersin B Kim, Edward (School: Kalaheo High School) Biofilm-based infections pose two major problems: extreme resistance to antibiotics and many other conventional antimicrobial agents and extreme capacity for evading the host defenses. Dispersin B is a glycoside hydrolase that hydrolyzes the linear polymers in poly-β-1,6-N-acetylglucosamine, considered the main component of the biofilm. Thus, understanding the enzyme dynamics of biofilm-breaking Dispersin B and the nature of the substrate transition state would be important to develop effective antibiotic strategies. To obtain thermodynamic activation parameters, assays of Dispersin B and a biofilm from Staphylococcus aureus were conducted. Dispersin B successfully disturbed biofilm formation due to its cleaving abilities. Additionally, various concentrations of glucose were added to bacteria media, and addition of glucose was found to improve the biofilm formation. Using the optimal concentration of 8 mg/L glucose, independent temperature-controlled assays were performed with varying degrees of substrate concentration to determine the rate constant, which was input in the Arrhenius and Eyring equations. From the resulting thermodynamic values, the Gibbs free energy of activation was determined to be 62.9 kJ/mol at 37 degrees Celsius. Molecular dynamics simulations were performed to predict the transition state structure. After chemically drawn and optimized using the program Avogadro, the substrate analog (4-Nitrophenyl N-acetyl-β-D-glucosaminide) and the potential transition state structure were docked in the active site of Dispersin B. After 1ns molecular dynamics simulations, the potential transition state was observed. This computational method could yield better models of transition-state inhibitors for drug design. -
Book of Abstracts Of
BOOK OF ABSTRACTS OF BOOK OF ABSTRACTS OF CEB ANNUAL MEETING 2017 6 JULY 2017, BRAGA, PORTUGAL Edited by: Eugénio Campos Ferreira Publisher: Universidade do Minho, Centro de Engenharia Biológica Campus de Gualtar, 4710-057 Braga, Portugal ISBN: 978-989-97478-8-3 DOI: 10.21814/CEBsam2017 © Universidade do Minho This publication contains research works sponsored by Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Foreword The Centre of Biological Engineering (CEB, from the Portuguese title ‘Centro de Engenharia Biológica’) is a research unit of the School of Engineering of the University of Minho, which is recognized as a strategic infrastructure for the development of the Portuguese Biotechnology and Bioengineering fields. The mission of CEB is to generate, disseminate, and apply knowledge with relevance for society in the economic, social and cultural dimensions, and to contribute to the expansion of the scientific and technological fields under its scope of activity. The research carried out at CEB covers the molecular, cellular and process scales, combining knowledge from the exact, natural, health, environmental and engineering sciences, in order to develop new products and processes as well as a wide range of bioengineering and biotechnological applications in the agro-food, environmental, energy, industrial fine chemistry, biomedical and health fields. CEB combines R&D activities with advanced training, technology transfer, consulting and services, with the aim of fostering the industrial and agro-food, health, and environmental sectors.