Establishment of the Fungal Entomopathogen Beauveria Bassiana (Ascomycota: Hypocreales) As an Endophyte in Cocoa Seedlings (Theobroma Cacao)

Total Page:16

File Type:pdf, Size:1020Kb

Establishment of the Fungal Entomopathogen Beauveria Bassiana (Ascomycota: Hypocreales) As an Endophyte in Cocoa Seedlings (Theobroma Cacao) Mycologia, 97(6), 2005, pp. 1195–1200. # 2005 by The Mycological Society of America Lawrence, KS 66044-8897 Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao) Francisco Posada endophyte in woody plant hosts, can spread within Fernando E. Vega1 host tissues and can protect host plants against Insect Biocontrol Laboratory, U.S. Department of herbivores, such as the cocoa pod borer, has not Agriculture, Agricultural Research Service, Bldg. 011A, been evaluated. Our ultimate goal is to determine BARC-W, Beltsville, Maryland 20705 whether cocoa plants inoculated with B. bassiana in the seedling stage can sustain the fungus in the field, and more importantly, whether B. bassiana can be Abstract: The fungal entomopathogen Beauveria detected in the pod, where it ideally would help bassiana became established as an endophyte in in control the cocoa pod borer. vitro-grown cocoa seedlings tested for up to 2 mo The cocoa pod borer is believed to be endemic to after inoculation to the radicle with B. bassiana Southeast Asia and to have shifted from rambutan suspensions. The fungus was recovered in culture (Nephelium lappaceum L.), pulasan (N. mutabile from stems, leaves and roots. B. bassiana also was Blume) and nam-nam (Cynometra cauliflora L.) to detected as an epiphyte 1 and 2 mo postinoculation. cocoa, which was introduced from the American Penicillium oxalicum and five bacterial morphospecies continent in the 16th century (Malaysian Plant also were detected, indicating that these were present Protection Society 1987). as endophytes in the seed. Female cocoa pod borers can lay up to 100 eggs on Key words: biological control, cacao, cocoa pod the surface of the cocoa pod. Upon hatching, larvae borer, Conopomorpha, entomopathogens, insect bore into the pod where they feed on the pulp and pathogens placental tissue, which leads to deformed and clumped seeds and premature pod ripening, thus INTRODUCTION greatly reducing yield and quality (Malaysian Plant Protection Society 1987, Santoso et al 2004). Approx- One possible pest management mechanism against imately 2 wk after hatching, larvae emerge from the the cocoa pod borer Conopomorpha cramerella (Snel- pod to pupate on the leaf litter or directly on the pod, len) (Lepidoptera: Gracillariidae), the most impor- followed by adult emergence (Santoso et al 2004). tant insect pest attacking cocoa (Theobroma cacao L.) Because these insects are small and larval develop- in Malaysia, Indonesia and the Philippines (Bradley ment takes place inside the pod, they have proven to 1986), involves the inoculation of cocoa plants with be extremely difficult to control and have caused yield the fungal entomopathogen Beauveria bassiana (Bal- losses of up to 80% (Day 1989). Various techniques samo) Vuillemin (Ascomycota: Hypocreales) in an have been used in an attempt to reduce pest attempt to establish the fungus as an endophyte incidence, including harvesting of all available pods (Arnold and Lewis 2005). Bing and Lewis (1991) have to interrupt the life cycle (termed ‘‘rampassen’’, shown that B. bassiana can be introduced as an Wood et al 1992), chemical insecticides (Wardojo endophyte of Zea mays, where it causes mortality of 1980, Day and Mumford 1994), pheromone-baited the European corn borer, Ostrinia nubilalis (Hu¨bner) traps (Beevor et al 1993), biocontrol agents (Nagaraja (reviewed in Arnold and Lewis 2005). B. bassiana has et al 1986, Awang and Lee 1998) and bagging of been reported as an endophyte of maize (Arnold and cocoa pods (Vanialingam et al 1982). In this paper we Lewis 2005), potato ( Jones 1994), tomato (Leckie describe the in vitro introduction of B. bassiana as an 2002) and on Theobroma gileri, a relative of cocoa endophyte in cocoa seedlings, establishing an impor- (Evans et al 2003). Recently endophytic B. bassiana tant first step in the possible use of this fungus as has been isolated from coffee plants in Colombia; a biocontrol agent. preliminary laboratory results demonstrate the possi- bility of inoculating coffee plants with B. bassiana MATERIALS AND METHODS using various methods (Posada and Vega unpubl data). Whether B. bassiana can persist as an Cocoa seeds removed from ripe pods were surface sterilized by submerging them in 10% bleach for 2 min, followed by submersion in 95% ethanol for 2 min and rinsed in sterile Accepted for publication 16 Aug 2005. water three times. The seeds were placed on sterile filter 1 Corresponding author. E-mail: [email protected] paper moistened with sterile water and placed inside 100 3 1195 1196 MYCOLOGIA 15 mm Petri dishes. The dishes were sealed with parafilm At all sampling times, the control was processed first, and kept in an unlit growth chamber at 25 6 2.0 C. followed by CS16-1 and then IC-5486. To assess for the When the seeds had germinated and the roots were ca. presence of endophytes tissues (roots, stems, leaves) were 3 cm long, they were transferred to a laminar flow hood for surface-disinfected by submersion in 0.5% sodium hypo- inoculation with one of two isolates of B. bassiana: (i) Ivory chlorite for 2 min, 70% ethanol for 2 min and then rinsed Coast 5486 (IC-5486), isolated from an infected coffee berry with sterile water (Arnold et al 2001). The tissues were dried borer (Hypothenemus hampei (Ferrari); Coleoptera: Curculio- on sterile paper towels and, after cutting off the edges to nidae); or (ii) CS16-1, isolated as an endophyte from coffee remove the dead tissue originating from the disinfection berries in Colombia. Both isolates are highly pathogenic to process, cut into 4 to 9 mm2 sections, six of which were the coffee berry borer (Posada and Vega 2005) and have been placed in each of two Petri dishes containing YMA+3A. deposited in the Insect Biocontrol Laboratory fungal en- Tissues were examined four d later, and any fungal growth tomopathogens collection. Isolates were retrieved from was subcultured onto individual plates containing YMA+3A single-spore stocks stored in 10% glycerol and grown on for subsequent identification. To evaluate the quality of the yeast-maltose agar (YMA; Sigma-Aldrich Co., St Louis, surface sterilization method 10 mL of the water used to Missouri) to which a 0.1% stock antibiotic solution was added rinse the tissues after surface sterilization was taken and (YMA+3A). The antibiotic stock consisted of 0.02 g of each of 15 mL aliquots of a 1023 dilution were plated on YMA+3A three antibiotics (tetracycline, streptomycin and penicillin) and spread with a sterile glass rod. For each suspension two dissolved in 10 mL sterile distilled water, followed by filter dishes were plated and after incubation for 4 d at 25 6 sterilization through a 0.2 mm filter (Nalgene Disposable 2.0 C, colonies were counted and expressed as colony- Filterware, Nalge Nunc International, Rochester, New York); forming units (CFU) per mL. from this, 1 mL was added to each liter of medium. Spores The experiment was organized as a completely random- were less than 30 d old when used. Before inoculation, spore ized design with a factorial arrangement. The factors were germination rate was determined on 2.5% Noble agar (BD the isolates (CS16-1, IC-5486 and the control), two sampling DifcoTM Agar, Noble; Becton, Dickinson & Co., Franklin periods (1 and 2 mo after inoculation) and three types of Lakes, New Jersey) as follows: a 15 mL aliquot from a 1023 tissues sampled (leaves, stem and root). Thus, at each dilution was plated on the agar surface, spread with a sterile sampling period, 432 subsamples of tissues were plated, glass rod and incubated at 25 6 2.0 C. At 24 h three groups of based on the combination of two isolates and one control by 100 spores were counted and the data were expressed as four plants by three tissues (leaves, stems and roots) by two percentages. replicates for each tissue type and six subsamples plated on To inoculate each individual seedling, 100 mLofa13 each Petri dish. The data obtained from the evaluation were 107 mL21 B. bassiana spore suspension were inoculated on expressed as colonization frequency using Fisher and the main radicle of each seedling with a pipette. The seeds Petrini’s (1987) formula: colonization frequency 5 number then were placed inside individual 100 3 15 mm sterile of colonized segments divided by the total number of Petri dishes and allowed to dry in the laminar flow hood segments 1003. The data were square root-transformed and before transferring to sterile 25 3 250 mm test tubes analyzed with ANOVA (SAS Institute, Inc. 2000). (Kimble Glass Inc., New Jersey) containing 20 mL of sterile 10% water agar (Difco Bacto Agar, Becton, Dickinson & Co., Franklin Lakes, New Jersey). Using sterile tweezers the RESULTS germinated seeds were inserted individually in each tube Spore germination of B. bassiana isolates used to making sure the radicle was inserted in the agar. Tubes were inoculate the radicles was .85%. Neither B. bassiana capped with sterile sponges overlaid with sterile aluminum nor any other microorganism was ever observed in the foil and kept in the laboratory at ca. 12 : 12 photoperiod and ca. 25 6 2.0 C. water agar medium used to grow the seedlings. The Evaluations of B. bassiana colonization of cocoa tissues water used to rinse tissues after sterilization yielded were carried out 30 and 60 d after spore inoculation. Twelve no microorganisms in either sampling period; thus plants were used for each evaluation: four plants for each B. any ensuing fungal growth from surface-sterilized bassiana isolate and four for the control, which received tissues is inferred to have originated from internal 100 mL of sterile water at the moment of inoculation.
Recommended publications
  • Preferred Name
    Cord 2006, 22 (1) Cocoa pod borer threatening the sustainable coconut-cocoa cropping system in Papua New Guinea S. P. Singh¹ and P. Rethinam¹ Abstract Cocoa pod borer Conopomorpha cramerella Snellen is an important pest of cocoa. Its recent invasion of cocoa in Papua New Guinea is threatening the sustainable coconut-cocoa cropping system. C. cramerella occurs only in South-East Asia and the western Pacific. It has been the single most important limiting factor to cocoa production in Indonesia, Malaysia and the Philippines. C. cramerella attacks cocoa, Theobroma cacao; rambutan, Nephelium lappaceum; cola, Cola acuminate; pulasan, Nephelium mutabile; kasai, Albizia retusa, nam-nam,Cynometra cauliflora; litchi (Litchi chinensis); longan (Dimocarpus longan) and taun, Pometia pinnata. The possible mode of its spread is through seed pods/fruits carried from previously infested regions. However, there is possibility of local adaptations of rambutan-feeders or nam-nam-feeders to cocoa. Females lay their eggs (50-100) on the surface of the unripe pods (more than five cm in length), which hatch in about 3-7 days and the emerging larvae tunnel their way to the center of the pod where they feed for about 14-18 days before chewing their way out of the pod to pupate. The pupal stage lasts 6- 8 days. The larval feeding results in pods that may ripen prematurely, with small, flat beans, often stuck together in a mass of dried mucilage. The beans from seriously infested pods are completely unusable and in heavy infestation over half the potential crop can be lost. Over four dozen species of natural enemies (parasitoids, predators, and entomopathogens) attack eggs, larvae, pupae and adults of C.
    [Show full text]
  • Describing Florida Varieties of Lyghee
    276 FLORIDA STATE HORTICULTURAL SOCIETY, 1951 An early ripening avocado has come to the seedling in the Essig grove so in a few years attention of your committee, in the grove of more will be known of its behavior. S. C. Essig, formerly owned by Mrs. M. R. Your committee is particularly interested in Pond near Princeton. It is as early as the locating seedlings which will extend the pro Pollock with about half the size. Mrs. Pond ducing season of avocados and will extend the obtained scions of this seedling some years region in Florida which can produce avocados. ago from Bronson Bayliss' grove. Several The discovery of an avocado which will stand trees have been top worked recently to this wet feet would be a real accomplishment. DESCRIBING FLORIDA VARIETIES OF LYGHEE G. Weidman Groff and by the designation of type material for Lingman Plant Exchange preservation and future consultation. There Laurel is no more reason for irresponsible new nam ing of old varieties in horticulture than there and is in any other branch of systematic science. Su-Ying Liu At the time of naming a new variety the one Barb our Scholar and Research Assistant describing it should give a record of its origin, Botanical Gardens, University of Michigan should indicate the precise individual living Ann Arbor, Michigan plant to serve as a type, and should grant the prvilege of preparing record specimens from The primary object of this paper is to pre it for pomological and botanical collections. pare the way for a better understanding of Not every seedling will be worthy of clonal lychee varieties by reporting on techniques for propagation because of its merits in horticul field studies, descriptions and establishing of tural or its botanical distinctiveness, and there names.
    [Show full text]
  • Festival 2002 Festival 2002
    NOVEMBER & DECEMBER 2002 FRUIT GARDENER VOL. 34, NO. 6 – $5.00 FESTIVFESTIVALAL 20022002 ◆◆ VVanillaanilla inin Madagascar:Madagascar: ShadesShades ofof NoirNoir FESTIVFESTIVALAL OFOF FRUITFRUIT ◆◆ GrGrenada’enada’ss NutmegNutmeg andand Mace:Mace: SpicesSpices ofof LifeLife REPORREPORTSTS INSIDEINSIDE ◆◆ PuertoPuerto Rico:Rico: 100100 YearsYears ofof AgriculturalAgricultural ResearchResearch California Rare Fruit Growers, Inc. Draft-5 OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANA Puerto Rico’s TropicalFRUIT Agriculture GARDENER Research Station 100 Years of Tropical Research Story by Ricardo Goenaga and Sidebar by Larry Shore Photos courtesy of the Agricultural Research Service he Tropical Agriculture Research Station, operated by the USDA’s Agricultural Research T Service, had its beginning in 1901, when Congress appropriated $5,000 and directed the Secretary of Agriculture to establish an experiment station in Puerto Rico to study agricul- 1 tural problems of interest to the island. The Governor of Puerto Rico, cooperating with the island’s communities and the U.S. Department of Agriculture, selected the present site of the station at Mayaguez: the farm known as Hacienda Carmen, 235 acres donated by the City of Mayaguez. At its inception, this facility was known as the Federal Experiment Station. In 1975 it became the Mayaguez Institute of Tropical Agriculture (mita), and in 1982 was renamed the Tropical Ag- riculture Research Station (tars). Since 1961 it has been part of the Agricultural Research Service’s Tropical Crops and Germplasm Research Division. When established, the Federal Experiment Station was the island’s only institution for agricul- 2 tural research, and horticultural research has always been prominent in the station’s program.
    [Show full text]
  • (Nephelium Ramboutan-Ake) Genetic Diversity in Bogor, West Java, Using Microsatellite Markers
    doi: 10.11594/jtls.06.03.09 THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 6, NO. 3, pp. 184 - 189, September 2016 Submitted October 2015; Revised August 2016; Accepted September 2016 Evaluation of Pulasan (Nephelium ramboutan-ake) Genetic Diversity in Bogor, West Java, Using Microsatellite Markers Amelia Luisyane Puhili, Tatik Chikmawati*, Nina Ratna Djuita Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia ABSTRACT Pulasan (Nephelium ramboutan-ake (Labill.) Leenh) fruit is highly similar to rambutan rapiah (Nephelium lap- paceum) fruit with ovate shape, sweet and sour fresh taste, but it has a thick rind. The diversity of pulasan is little informed including in Bogor. The objective of this study was to analyze the genetic diversity of pulasan from Bo- gor revealed by microsatellite marker. The DNA of 63 individuals from 10 populations of pulasan were extracted using CTAB method and amplified using two primer sets, LMLY6 (GA)9(CA)2(GA)4 dan LMLY12 (CT)11. DNA amplification product was visualized and arranged in a matrix of binary data then analyzed the value of the number of different alleles (Na), the number of effective alleles (Ne), Shannon information index (I), heterozygos- ity (He), and the percentage of polymorphism (PLP). The results of the analysis showed the highest genetic diver- sity was found in North Bogor (He=0.313). The genetic diversity within a population (61%) was higher than that among populations (39%). A dendrogram was constructed using the Unweighted Pair Group Method with arith- metic Mean (UPGMA). The similarity index ranged from 52 to 100% that means there are close relationships among individuals.
    [Show full text]
  • Technical Guidelines for the Safe Movement of Cacao Germplasm
    Technical Guidelines for the Safe Movement of Cacao Germplasm (Revised from the FAO/IPGRI Technical Guidelines No. 20) Edited by Michelle J End, Andrew J Daymond and Paul Hadley CacaoNet (www.cacaonet.org) is an international network for cacao genetic resources coordinated by Bioversity International with a steering committee and working groups composed of representatives from various cocoa research institutes and organizations supporting cocoa research. CacaoNet aims to optimize the conservation and use of cacao genetic resources, as the foundation of a sustainable cocoa economy (from farmers through research to consumers), by coordinating and strengthening the conservation and related research efforts of a worldwide network of public and private sector stakeholders. Bioversity International (www.bioversityinternational.org) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The organization operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods. While every effort is made to ensure the accuracy of the information reported in this publication, CacaoNet, Bioversity International and any contributing authors cannot accept any responsibility for the consequences of the use of this information.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • Cynometra Cauliflora L.) and TAMPANG BESI (Callicarpa Maingayi K
    UNIVERSITI PUTRA MALAYSIA PHYTOCHEMICAL, BIOACTIVITY AND LC-DAD-MS/MS ANALYSES OF NAM-NAM (Cynometra cauliflora L.) AND TAMPANG BESI (Callicarpa maingayi K. & G.) LEAF EXTRACTS UPM MUHAMMAD ABUBAKAR ADO COPYRIGHT © IB 2016 9 PHYTOCHEMICAL, BIOACTIVITY AND LC-DAD-MS/MS ANALYSES OF NAM-NAM (Cynometra cauliflora L.) AND TAMPANG BESI (Callicarpa maingayi K. & G.) LEAF EXTRACTS UPM By MUHAMMAD ABUBAKAR ADO COPYRIGHT Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in © Fulfiliment of the Requirements for the Degree of Doctor of Philosophy September 2016 COPYRIGHT All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia UPM COPYRIGHT © DEDICATION This thesis is dedicated to my parents and family UPM COPYRIGHT © Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy PHYTOCHEMICAL, BIOACTIVITY AND LC-DAD-MS/MS ANALYSES OF NAM-NAM (Cynometra cauliflora L.) AND TAMPANG BESI (Callicarpa maingayi K. & G.) LEAF EXTRACTS By MUHAMMAD ABUBAKAR ADO September 2016 UPM Chairman : Associate Professor Faridah Abas, PhD Institute : Biosciences Current research indicates that radical oxygen species (ROS) liberated along with some other components in the body are capable of destroying cellular constituents and act as secondary messengers for some chronic diseases, such as diabetes, Alzheimer`s disease (AD), coronary heart diseases, skin disease and inflammation.
    [Show full text]
  • Nephelium Ramboutan-Ake Sapindaceae
    Nephelium ramboutan-ake (Labill.) Leenh. Sapindaceae LOCAL NAMES Burmese (kyetmauk); Dutch (kapoelasan); English (pulasan); Filipino (karayo); Indonesian (pulasan); Japanese (purasan); Malay (Rambutan paroh,Rambutan kafri,Pulasan,meritam) BOTANIC DESCRIPTION Nephelium ramboutan-ake is a tree to 24 m tall, trunk 45 cm in diameter, buttresses up to 1.5 m tall. Leaves (1-)3-7(-18)-jugate, petiole 3-9 cm long, petiolules 2-4 mm; leaflets 5-11 cm x 1.5-3.5 cm, 2.5-6 times as long as wide. Inflorescences terminal and axillary; petals absent; stamens 5-6, pistil 1-2- merous. Fruit ellipsoid to subglobular, 3 cm x 2.25 cm, sparsely set with thick warts tapering into up to 7.5-mm long appendages, red. N. ramboutan-ake is a variable species and may closely resemble N. lappaceum. The spines on the fruits are usually short and stubby in N. ramboutan-ake and long filiform in N. lappaceum. BIOLOGY Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Nephelium ramboutan-ake (Labill.) Leenh. Sapindaceae ECOLOGY N. ramboutan-ake occurs mostly in lowland primary forests, often on river banks but rarely in swamps, usually on sand or clay. BIOPHYSICAL LIMITS Soil types: N. ramboutan-ake usually occurs on sand or clay. DOCUMENTED SPECIES DISTRIBUTION Native: India, Indonesia, Malaysia, Myanmar, Philippines Exotic: Native range Exotic range The map above shows countries where the species has been planted. It does neither suggest that the species can be planted in every ecological zone within that country, nor that the species can not be planted in other countries than those depicted.
    [Show full text]
  • Off-Season Flower Induction of Longan with Potassium Chlorate
    and Yapwattanaphun, 2001; Zee Off-season Flower Induction of Longan with et al., 1998). Inconsistent floral induction and alternate bearing in Potassium Chlorate, Sodium Chlorite, and longan productionhas been alleviated Sodium Hypochlorite by the discovery of potassium chlo­ rate (KC103 ) to induce off-season 1 2 flowers and fruits worldwide (Choo, Tracie K. Matsumoto ,\ Mike A. Nagao , and Bruce Mackey3 2000; Manochai et al., 2005; Nagao and Ho-a, 2000; Sabhadrabandhu ADDITIONAL INDEX WORDS. Dimocarpus longan, bleach, subtropical fruit tree, and Yapwattanaphun, 2001; Yen dragon eye, Sapindaceae et al., 2001). Application of KC103 as a soil drench (10% to 20% chlorate SUMMARY. Flower induction oflongan (Dimocarpus longan) with potassiwn solution), broadcast under the can­ chlorate has improved the availability oflongan fruit, but potassiwn chlorate is opy (200 to 400 g/tree), foliar spray potentially explosive and often difficult to purchase, transport, and store. Previous 1 (1 to 2 g.L- ), or branch or stem reports suggested thathypochlorite enhances naturallongan flower induction. This 1 study is the first to demonstrate that cWorite- and hypochlorite- (bleach) induced injection (0.05 to 0.25 g·cm- off-season longan flowering is similar to cWorate-treated trees. Hypochlorite branch) is effective for promoting induction offlowering with bleach was likely the result ofchlorate in the bleach flowering (Manochai et al., 2005; solution. Chloratewas present in the leachate from pottedlongan trees treatedwith Yen, 2000; Yen et al., 2001). For bleach and was detected in bleach before soil application. The quantity ofchlorate optimal flowering, KC103 should be found in bleach induced flowering to the same or greater extent as equivalent applied to trees with mature leaf quantities ofpotassiwn chlorate, suggesting chlorate is an a.i.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • (Sapindaceae) of Nephelium, Like
    BLUMEA 31 (1986) 373-436 A taxonomic revision of Nephelium(Sapindaceae) P.W. Leenhouts Rijksherbarium,Leiden, The Netherlands Summary In the present revision of Nephelium 22 species are recognised, 6 of which are new (1 un- named). Nephelium cuspidatum is subdivided into 6 varieties and 4 subvarieties; N. lappaceum comprises 3 varieties. The systematic connections within the genus are unclear. Introduction The present revision of Nephelium, like Radlkofer's (1932/33), is primarily or even exclusively based upon fruit- and leaf characters, however uncertain the reliabili- first from first ty of these characters may seem at sight. Starting a arrangement into the fruits microtaxa characterised by same leaves and the same and gradually com- bining those that showed only slight differences, it appeared that some characters were at least practically useful, if not systematically reliable. The most constant char- acters appeared to be primarily those of the fruit, secondarily leaf characters. Impor- tant fruit characters are presence or absence of a dense puberulous indument, and the kind of appendages, especially whether these can be divided into a broadened or leaf characters swollen basal and a much narrower apical part or not. The main are: the whether the midrib the way in which petiolule is grooved above and continues in this whether the the groove or not; in connection with midrib is raised or sunken on the of the reticulation dense upper side the leaflet; may be very or lax, rarely in be- tween; the hairiness of the leaflets; and presence or absence of domatia. Additional characters appeared to be useful in individual taxa but did not play an important part in the whole.
    [Show full text]
  • Aqueous Fraction of Nephelium Ramboutan-Ake Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells
    Molecules 2012, 17, 6633-6657; doi:10.3390/molecules17066633 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Aqueous Fraction of Nephelium ramboutan-ake Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells Chim Kei Chan, Bey Hing Goh, Muhamad Noor Alfarizal Kamarudin and Habsah Abdul Kadir * Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +603-7967-4363; Fax: +603-7967-4178. Received: 23 February 2012; in revised form: 23 May 2012 / Accepted: 25 May 2012 / Published: 31 May 2012 Abstract: The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells.
    [Show full text]