A Comprehensive Review of the Covalent Immobilization of Biomolecules Onto Electrospun Nanofibers

Total Page:16

File Type:pdf, Size:1020Kb

A Comprehensive Review of the Covalent Immobilization of Biomolecules Onto Electrospun Nanofibers nanomaterials Review A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers Soshana Smith 1,* , Katarina Goodge 1 , Michael Delaney 2, Ariel Struzyk 2, Nicole Tansey 1 and Margaret Frey 1 1 Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; [email protected] (K.G.); [email protected] (N.T.); [email protected] (M.F.) 2 Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; [email protected] (M.D.); [email protected] (A.S.) * Correspondence: [email protected] Received: 7 October 2020; Accepted: 21 October 2020; Published: 27 October 2020 Abstract: Biomolecule immobilization has attracted the attention of various fields such as fine chemistry and biomedicine for their use in several applications such as wastewater, immunosensors, biofuels, et cetera. The performance of immobilized biomolecules depends on the substrate and the immobilization method utilized. Electrospun nanofibers act as an excellent substrate for immobilization due to their large surface area to volume ratio and interconnectivity. While biomolecules can be immobilized using adsorption and encapsulation, covalent immobilization offers a way to permanently fix the material to the fiber surface resulting in high efficiency, good specificity, and excellent stability. This review aims to highlight the various covalent immobilization techniques being utilized and their benefits and drawbacks. These methods typically fall into two categories: (1) direct immobilization and (2) use of crosslinkers. Direct immobilization techniques are usually simple and utilize the strong electrophilic functional groups on the nanofiber. While crosslinkers are used as an intermediary between the nanofiber substrate and the biomolecule, with some crosslinkers being present in the final product and others simply facilitating the reactions. We aim to provide an explanation of each immobilization technique, biomolecules commonly paired with said technique and the benefit of immobilization over the free biomolecule. Keywords: nanofiber; biomolecule; enzyme; covalent immobilization; crosslinker; electrospinning 1. Introduction Nanofibers are favored as a substrate for biomolecule immobilization because of their high surface to volume ratio, low barrier to diffusion and interconnected pore network [1,2]. These factors allow researchers to have a much higher biomolecule loading compared to other polymer substrates such as beads and films. Nanofibers have been used to immobilize a variety of biomolecules such as enzymes, DNA, aptamers and proteins. The porous nature of the membrane allows for easy diffusion to the nanofiber surface leading to greater biomolecule retention on the large available surface area [3,4]. Researchers have found enzyme activity retention was inversely proportional to fiber diameter and attributed this enhanced activity retention to reduced interactions between molecules on the surface of the material and diminished boundary layers for diffusion [5–8]. In addition to improved activity retention, researchers have also noted enhanced pH, temperature and storage stability [9], as well as increased cell capture, growth and proliferation [10] when utilizing nanofibers for biomolecule retention. Nanomaterials 2020, 10, 2142; doi:10.3390/nano10112142 www.mdpi.com/journal/nanomaterials Nanomaterials 2020, 10, 2142 2 of 39 ThereNanomaterials are many 2020, 10 ways, x to manufacture the needed nanofibers such as self-assembly, phase separation2 of 40 and electrospinning [11]. Electrospinning presents a facile, inexpensive way to make highly tunable There are many ways to manufacture the needed nanofibers such as self-assembly, phase nanofibersseparation allowing and electrospi researchersnning great [11]. controlElectrospinnin over matg presents thickness a facile, and inexpensive composition, way surface to make area to volumehighly ratio, tunable and intra- nanofibers/inter- allowi pore sizeng researchers distribution. great The control usual over electrospinning mat thickness set-up and composition, consists of three mainsurface parts: aarea syringe to volume filled withratio, polymerand intra-/inter- solution, po are grounded size distribution. collector, The and usual a voltage electrospinning source providing set- electricalup consists charge of to three the syringemain parts: needle. a syringe Using filled a pump, with polymer the spinning solution, solution a grounded is gradually collector, forced and a from the syringevoltage intosource the providing needle. Theelectrical application charge to of the the syringe electric needle. charge Using on the a pump, needle the creates spinning an solution electric field gradientis gradually between forced the needle from the and syringe grounded into collector.the needle. This The diapplicationfference creates of the electric a pendant-like charge on droplet the of the spinningneedle creates fluid calledan electric a Taylor field cone,gradient which between once the ejected needle begins and grounded to whip andcollector. elongate This untildifference it reaches creates a pendant-like droplet of the spinning fluid called a Taylor cone, which once ejected begins the collector plate. The resultant fibers have a large surface area with the typical specific surface area to whip and elongate until it reaches the collector plate. The resultant fibers have a large surface area being 10 m2/g for fiber diameters around 500 nm and 1000 m2/g for diameters around 50 nm [12]. with the typical specific surface area being 10 m2/g for fiber diameters around 500 nm and 1000 m2/g The finalfor diameters fibers can around have 50 a varietynm [12]. of The morphologies final fibers can including have a variety beaded, of aligned,morphologies hollow, including core-shell, flat-ribbonbeaded, and aligned, porous hollow, (Figure core-shell,1a–f). flat-ribbon The final and fiber porous morphology (Figure 1a–f). and The properties final fiber are morphology impacted by variousand polymer properties parameters are impacted such by asva typerious ofpolymer polymer parameters used, polymer such as moleculartype of polymer weight, used, surface polymer tension, conductivitymolecular and weight, volatility surface of tension, the spinning conductivity solution. and Operationvolatility of conditionsthe spinning such solution. as applied Operation voltage, feed rate,conditions spinneret such diameteras applied andvoltage, distance feed rate, between spinneret the diameter spinneret and and distance the collecting between substratethe spinneret are also significant.and the Finally, collecting one substrate must consider are also environmentalsignificant. Finally, factors one must such consider as air temperature, environmental humidity factors and air speed.such as Mastering air temperature, a well-balanced humidity and application air speed. Mastering of all these a well-balanced factors has allowed application researchers of all these to use factors has allowed researchers to use electrospinning as an easy method for creating substrates for electrospinning as an easy method for creating substrates for biomolecule immobilization. biomolecule immobilization. a) b) 50 μm 1 μm c) d) 161 nm 347 nm 2 μm 100 nm e) f) 40 μm 5μm FigureFigure 1. Different 1. Different fiber morphologiesfiber morphologies achieved achieved by various by various researchers research usingers using the electrospinning the electrospinning technique: (a) beaded;technique: (b) aligned; (a) beaded (c) [13]; hollow; (b) aligned (d) core-sheath; [14]; (c) hollow (e) flat [15]; ribbon; (d) core-sheath (f) porous. [16]; Reproduced (e) flat ribbon with [17]; permission (f) porous [18]. from [13], Copyright John Wiley & Sons, Inc., 2007. Reproduced from [14], Copyright Elsevier, 2012. ReproducedImmobilization from [15], of Copyright biomolecules John Wileyonto nanofibers & Sons, Inc., ca 2007.n be done Reproduced in a variety from [of16 ways:], Copyright encapsulation Springer Nature,[19–22], 2011.adsorption Reproduced [23–28] from and[ covalent17,18], Copyright bonding. Elsevier, Encapsulated 2008, 2007. biomolecules are not attached to the nanofiber surface but instead entrapped in the polymer network. The desired biomolecule is added Immobilizationto the spinning solution of biomolecules and becomes onto immobilized nanofibers can in bethe done polymer in a varietymatrix during of ways: the encapsulation electrospinning [19 –22], adsorption [23–28] and covalent bonding. Encapsulated biomolecules are not attached to the nanofiber surface but instead entrapped in the polymer network. The desired biomolecule is added to the Nanomaterials 2020, 10, 2142 3 of 39 Nanomaterials 2020, 10, x 3 of 40 spinning solution and becomes immobilized in the polymer matrix during the electrospinning process. Thisprocess. method This works method well forworks immobilizing well for biocatalysts,immobilizing such biocatalysts, as enzymes, such as wellas enzymes, as encapsulating as well drugsas andencapsulating vitamins. This drugs method and improvesvitamins. enzyme This method stability im asproves well asenzyme reduces stability leaching as into well the as surrounding reduces solutionleaching or into denaturation the surrounding of the enzyme. solution However,or denaturation because of thethe biomolecule enzyme. However, is encapsulated because inthe the nanofiber,biomolecule high is mass encapsulated transfer in resistance the nanofiber, leads high to large mass amounts transfer ofresi thestance biomolecule
Recommended publications
  • EH&S COVID-19 Chemical Disinfectant Safety Information
    COVID-19 CHEMICAL DISINFECTANT SAFETY INFORMATION Updated June 24, 2020 The COVID-19 pandemic has caused an increase in the number of disinfection products used throughout UW departments. This document provides general information about EPA-registered disinfectants, such as potential health hazards and personal protective equipment recommendations, for the commonly used disinfectants at the UW. Chemical Disinfectant Base / Category Products Potential Hazards Controls ● Ethyl alcohol Highly flammable and could form explosive Disposable nitrile gloves Alcohols ● ● vapor/air mixtures. ● Use in well-ventilated areas away from o Clorox 4 in One Disinfecting Spray Ready-to-Use ● May react violently with strong oxidants. ignition sources ● Alcohols may de-fat the skin and cause ● Wear long sleeve shirt and pants ● Isopropyl alcohol dermatitis. ● Closed toe shoes o Isopropyl Alcohol Antiseptic ● Inhalation of concentrated alcohol vapor 75% Topical Solution, MM may cause irritation of the respiratory tract (Ready to Use) and effects on the central nervous system. o Opti-Cide Surface Wipes o Powell PII Disinfectant Wipes o Super Sani Cloth Germicidal Wipe 201 Hall Health Center, Box 354400, Seattle, WA 98195-4400 206.543.7262 ᅵ fax 206.543.3351ᅵ www.ehs.washington.edu ● Formaldehyde Formaldehyde in gas form is extremely Disposable nitrile gloves for Aldehydes ● ● flammable. It forms explosive mixtures with concentrations 10% or less ● Paraformaldehyde air. ● Medium or heavyweight nitrile, neoprene, ● Glutaraldehyde ● It should only be used in well-ventilated natural rubber, or PVC gloves for ● Ortho-phthalaldehyde (OPA) areas. concentrated solutions ● The chemicals are irritating, toxic to humans ● Protective clothing to minimize skin upon contact or inhalation of high contact concentrations.
    [Show full text]
  • Properties of Polypropylene Yarns with a Polytetrafluoroethylene
    coatings Article Properties of Polypropylene Yarns with a Polytetrafluoroethylene Coating Containing Stabilized Magnetite Particles Natalia Prorokova 1,2,* and Svetlana Vavilova 1 1 G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russia; [email protected] 2 Department of Natural Sciences and Technosphere Safety, Ivanovo State Polytechnic University, Sheremetevsky Ave. 21, 153000 Ivanovo, Russia * Correspondence: [email protected] Abstract: This paper describes an original method for forming a stable coating on a polypropylene yarn. The use of this method provides this yarn with barrier antimicrobial properties, reducing its electrical resistance, increasing its strength, and achieving extremely high chemical resistance, similar to that of fluoropolymer yarns. The method is applied at the melt-spinning stage of polypropylene yarns. It is based on forming an ultrathin, continuous, and uniform coating on the surface of each of the yarn filaments. The coating is formed from polytetrafluoroethylene doped with magnetite nanoparticles stabilized with sodium stearate. The paper presents the results of a study of the effects of such an ultrathin polytetrafluoroethylene coating containing stabilized magnetite particles on the mechanical and electrophysical characteristics of the polypropylene yarn and its barrier antimicrobial properties. It also evaluates the chemical resistance of the polypropylene yarn with a coating based on polytetrafluoroethylene doped with magnetite nanoparticles. Citation: Prorokova, N.; Vavilova, S. Properties of Polypropylene Yarns Keywords: coatings; polypropylene yarn; polytetrafluoroethylene; magnetite nanoparticles; barrier with a Polytetrafluoroethylene antimicrobial properties; surface electrical resistance; chemical resistance; tensile strength Coating Containing Stabilized Magnetite Particles. Coatings 2021, 11, 830. https://doi.org/10.3390/ coatings11070830 1.
    [Show full text]
  • Polycarbodiimides As Classification-Free and Easy to Use Crosslinkers for Water-Based Coatings
    White paper Polycarbodiimides as classification-free and easy to use crosslinkers for water-based coatings By Dr. A.J. Derksen, Stahl International bv, The Netherlands Polycarbodiimides (CDl) selectively react with carboxylic acid (–COOH) groups in polymer chains. This type of crosslinking reaction results in a classic 3D polymer-crosslinker network. Compared to polyisocyanates, polycarbodiimides are much less sensitive to presence of water and able to achieve long pot lives. Due to the high reactivity, curing with CDI type crosslinkers can be done under room temperature or typical oven conditions used for drying of applied coatings. In addition to standard CDI crosslinker chemistry, on offer is also a range of dual reactivity CDI crosslinkers. A second type of reactive groups is attached to the polycarbodiimide in this range. Upon curing, this crosslinker not only reacts with the –COOH groups in the polymer chains, but also two of the reactive groups attached to the separate CDI molecules can couple to form an even denser network structure. Building further on the success of these polycarbodiimide crosslinkers, VOC-free polycarbodiimides, in aqueous delivery form, were introduced, which give extreme long pot lives. 1. Introduction when dealing with flexible substrates. A high level of crosslinking Crosslinking is widely practiced in nearly all the coating may be acceptable for hard coatings on rigid substrates, but industries in order to improve the performance of the coating. low levels may be best for soft coatings on extensible, flexible These improvements include wear, abrasion and chemical substrates such as rubber and leather. An important crosslinking resistances and toughness1. The improved performance originates system for aqueous resins involves the use of water-dispersible from the formation of a continuous three-dimensional network, oligomeric polyisocyanates.
    [Show full text]
  • Origins of Life: Transition from Geochemistry to Biogeochemistry
    December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times.
    [Show full text]
  • AP Biology Names___Biomolecule Stations Per
    AP Biology Names____________________________________ Biomolecule Stations Per.______________ In this two-day activity, you will move through several different stations and learn about the four macromolecules in the biological world. Day 1: Modeling Carbohydrates and Lipids 1. Use the 3d-printed models to answer the questions for carbohydrates and lipids. NOTE: Blank corners indicate “carbon” atoms. Glucose Fructose Glycerol Acetic Acid Butyric Acid Caproic Acid Day 2: Modeling Proteins 1. Using the Amino Acid Sidechain list, organize the sidechains on the circular magnetic mat according to their name or properties. 2. Examine the side chains and their positions on the circle. Describe your observations on your answer sheet by answering questions #1-6 under Modeling Proteins. 3. Now you have explored the chemical properties and atomic composition of each sidechain, you are ready to predict how proteins spontaneously fold up into their 3D shapes. Answer questions #7-8 on your answer sheet. 4. Unwind the yellow tube. Notice the blue and red end caps. The blue end cap represents the N- terminus (the beginning) and the red end cap represents the C-terminus (the end) of the protein. 5. Select 15 metal U-shaped clips from your kit. Beginning at the N-terminus, place the 15 u-clips three inches apart on the tube. 6. Select methionine from the mat and place it on the clip closest to the blue end cap. Choose six hydrophobic sidechains, two acidic sidechains, two basic sidechains, two cysteine sidechains, and two other polar sidechains. Place them in any order you choose on your tubes u-clips.
    [Show full text]
  • Trade Names and Manufacturers
    Appendix I Trade names and manufacturers In this appendix, some trade names of various polymeric materials are listed. The list is intended to cover the better known names but it is by no means exhaustive. It should be noted that the names given may or may not be registered. Trade name Polymer Manufacturer Abson ABS polymers B.F. Goodrich Chemical Co. Acrilan Polyacrylonitrile Chemstrand Corp. Acrylite Poly(methyl methacrylate) American Cyanamid Co. Adiprene Polyurethanes E.I. du Pont de Nemours & Co. Afcoryl ABS polymers Pechiney-Saint-Gobain Alathon Polyethylene E.I. du Pont de Nemours & Co. Alkathene Polyethylene Imperial Chemical Industries Ltd. Alloprene Chlorinated natural rubber Imperial Chemical Industries Ltd. Ameripol cis-1 ,4-Polyisoprene B.F. Goodrich Chemical Co. Araldite Epoxy resins Ciba (A.R.L.) Ltd. Arnel Cellulose triacetate Celanese Corp. Arnite Poly(ethylene terephthalate) Algemene Kunstzijde Unie N.Y. Baypren Polychloroprene Farbenfabriken Bayer AG Beetle Urea-formaldehyde resins British Industrial Plastics Ltd. Ben vic Poly(vinyl chloride) Solvay & Cie S.A. Bexphane Polypropylene Bakelite Xylonite Ltd. Butacite Poly( vinyl butyral) E.I. du Pont de Nemours & Co. Butakon Butadiene copolymers Imperial Chemical Industries Ltd. Butaprene Styrene-butadiene copolymers Firestone Tire and Rubber Co. Butvar Poly(vinyl butyral) Shawinigan Resins Corp. Cap ran Nylon 6 Allied Chemical Corp. Carbowax Poly(ethylene oxide) Union Carbide Corp. Cariflex I cis-1 ,4-Polyisoprene Shell Chemical Co. Ltd. Carina Poly(vinyl chloride) Shell Chemical Co. Ltd. TRADE NAMES AND MANUFACTURERS 457 Trade name Polymer Manufacturer Carin ex Polystyrene Shell Chemical Co. Ltd. Celcon Formaldehyde copolymer Celanese Plastics Co. Cellosize Hydroxyethylcellulose Union Carbide Corp.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Comparison of Effectiveness Disinfection of 2%
    ORIGINAL RESEARCH Journal of Dentomaxillofacial Science (J Dentomaxillofac Sci ) December 2018, Volume 3, Number 3: 169-171 P-ISSN.2503-0817, E-ISSN.2503-0825 Comparison of effectiveness disinfection of 2% Original Research glutaraldehyde and 4.8% chloroxylenol on tooth extraction instruments in the Department of Oral CrossMark http://dx.doi.org/10.15562/jdmfs.v3i2.794 Maxillofacial Surgery, Faculty of Dentistry, University of North Sumatera Month: December Ahyar Riza,* Isnandar, Indra B. Siregar, Bernard Volume No.: 3 Abstract Objective: To compare disinfecting effectiveness of 2% glutaraldehyde while the control group was treated with 4.8% chloroxylenol. Each Issue: 2 and 4.8% chloroxylenol on tooth extraction instruments at the instrument was pre-cleaned using a brush, water and soap for both Department of Oral Surgery, Faculty of Dentistry, University of North groups underwent the disinfection process. Sumatera. Results: The results were statistically analyzed using Mann-Whitney Material and Methods: This was an experimental study with post- Test. The comparison between glutaraldehyde and chloroxylenol First page No.: 147 test only control group design approach. Purposive technique is showed a significant difference to the total bacteria count on applied to collect samples which are lower molar extraction forceps. In instrument after disinfection (p=0.014 < 0.05). this study, sample were divided into 2 groups and each consisting of 18 Conclusion: 2% glutaraldehyde was more effective than 4.8% P-ISSN.2503-0817 instruments. The treatment group was treated with 2% glutaraldehyde chloroxylenol at disinfecting lower molar extraction forceps. Keyword: Disinfection, Glutaraldehyde, Chloroxylenol, Forceps E-ISSN.2503-0825 Cite this Article: Riza A, Siregar IB, Isnandar, Bernard.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Biology (BIOL) 1
    Biology (BIOL) 1 Biology (BIOL) Courses BIOL 0848. DNA: Friend or Foe. 3 Credit Hours. This course is typically offered in Fall. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are the ethical and legal implications involving the gathering and analysis of DNA samples for forensic analysis and DNA fingerprinting? Are there potential discriminatory implications that might result from the human genome project? What are embryonic stem cells, and why has this topic become an important social and political issue? Will advances in medicine allow humans to live considerably longer, and how will a longer human life span affect life on earth? We will learn through lectures, lecture demonstrations, problem solving in small groups and classroom discussion, and make vivid use of technology, including short videos from internet sources such as YouTube, electronic quizzes, imaging and video microscopy. NOTE: This course fulfills a Science & Technology (GS) requirement for students under GenEd and the Science & Technology Second Level (SB) requirement for students under Core. Students cannot receive credit for this course if they have successfully completed Biology 0948. Course Attributes: GS Repeatability: This course may not be repeated for additional credits. BIOL 0948. Honors DNA: Friend or Foe. 3 Credit Hours. This course is not offered every year. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0004156A1 Mellstedt Et Al
    US 2014.0004156A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0004156A1 Mellstedt et al. (43) Pub. Date: Jan. 2, 2014 (54) BOLOGICAL INHIBITORS OF ROR1 Publication Classification CAPABLE OF INDUCING CELL, DEATH (51) Int. C. (76) Inventors: Hakan Mellstedt, Stockholm (SE): C07K 6/28 (2006.01) Hodjattallah Rabbani, Stockholm (SE); CI2N IS/II3 (2006.01) Ingrid Teige, Lund (SE) (52) U.S. C. CPC ............ C07K 16/28 (2013.01); CI2N 15/1138 (21) Appl. No.: 13/516,925 (2013.01) USPC ...... 424/400; 530/387.9; 536/24.5:536/23.1; (22) PCT Filed: Dec. 10, 2010 435/320.1; 435/325; 435/375; 424/139.1; (86). PCT No.: PCT/EP2010/007524 514/44. A:536/23.53; 435/331 S371 (c)(1), (57) ABSTRACT (2), (4) Date: Mar. 1, 2013 The invention relates to antibodies and siRNA molecules for (30) Foreign Application Priority Data inducing cell death by the specific binding of ROR1, domains thereof of nucleotide molecules encoding ROR1. There are Dec. 18, 2009 (GB) ................................... O922143.3 also provided methods involving and uses of the antibodies Jun. 3, 2010 (GB) ................................... 1OO93O7.8 and siRNA molecules of the invention. Patent Application Publication Jan. 2, 2014 Sheet 1 of 25 US 2014/0004156A1 L/S.*L/SdXL|-WLIXCRIO6] N Patent Application Publication Jan. 2, 2014 Sheet 2 of 25 US 2014/0004156A1 a bi-saw exit-8 ext: xx x: i. s: s x 8. : xxx xx . ex* x8. gri syst {{..} : twic s yxi-xxii. 33. 8 M. : : ised-east x 8. Patent Application Publication Jan.
    [Show full text]
  • Dimethyl Sulfoxide Oxidation of Primary Alcohols
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1966 Dimethyl Sulfoxide Oxidation of Primary Alcohols Carmen Vargas Zenarosa Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Zenarosa, Carmen Vargas, "Dimethyl Sulfoxide Oxidation of Primary Alcohols" (1966). Master's Theses. 4374. https://scholarworks.wmich.edu/masters_theses/4374 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIMETHYL SULFOXIDE OXIDATION OF PRIMARY ALCOHOLS by Carmen Vargas Zenarosa A thesis presented to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan August, 1966 ACKNOWLEDGMENTS The author wishes to express her appreciation to the members of her committee, Dr, Don C. Iffland and Dr. Donald C, Berndt, for their helpful suggestions and most especially to Dr, Robert E, Harmon for his patience, understanding, and generous amount of time given to insure the completion of this work. Appreciation is also expressed for the assistance given by her. colleagues. The author acknowledges the assistance given by the National Institutes 0f Health for this research project. Carmen Vargas Zenarosa ii TABLE OF CONTENTS Page
    [Show full text]