Microstructure and Properties of Polytetrafluoroethylene Composites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Properties of Polypropylene Yarns with a Polytetrafluoroethylene
coatings Article Properties of Polypropylene Yarns with a Polytetrafluoroethylene Coating Containing Stabilized Magnetite Particles Natalia Prorokova 1,2,* and Svetlana Vavilova 1 1 G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russia; [email protected] 2 Department of Natural Sciences and Technosphere Safety, Ivanovo State Polytechnic University, Sheremetevsky Ave. 21, 153000 Ivanovo, Russia * Correspondence: [email protected] Abstract: This paper describes an original method for forming a stable coating on a polypropylene yarn. The use of this method provides this yarn with barrier antimicrobial properties, reducing its electrical resistance, increasing its strength, and achieving extremely high chemical resistance, similar to that of fluoropolymer yarns. The method is applied at the melt-spinning stage of polypropylene yarns. It is based on forming an ultrathin, continuous, and uniform coating on the surface of each of the yarn filaments. The coating is formed from polytetrafluoroethylene doped with magnetite nanoparticles stabilized with sodium stearate. The paper presents the results of a study of the effects of such an ultrathin polytetrafluoroethylene coating containing stabilized magnetite particles on the mechanical and electrophysical characteristics of the polypropylene yarn and its barrier antimicrobial properties. It also evaluates the chemical resistance of the polypropylene yarn with a coating based on polytetrafluoroethylene doped with magnetite nanoparticles. Citation: Prorokova, N.; Vavilova, S. Properties of Polypropylene Yarns Keywords: coatings; polypropylene yarn; polytetrafluoroethylene; magnetite nanoparticles; barrier with a Polytetrafluoroethylene antimicrobial properties; surface electrical resistance; chemical resistance; tensile strength Coating Containing Stabilized Magnetite Particles. Coatings 2021, 11, 830. https://doi.org/10.3390/ coatings11070830 1. -
Plastic Laws: Definitions
ELAW: Terms and Definitions from Plastic Laws Country Name of law if clear Link to law Term used Definition Estonia Waste Act https://www.riigiteataja.ee/en/eli/520012015021/consolideagricultural plastic means silage wrap film, silage covering film, tunnel film, net wrap, and plastic twine Australia, WA Environmental Protection (Plastichttps://www.slp.wa.gov.au/pco/prod/filestore.nsf/FileURL/mrdoc_41671.pdf/$FILE/Environmental%20Protection%20(Plastic%20Bags)%20Regulations%202018%20-%20%5B00-c0-00%5D.pdf?OpenElement Bags) Regulations 2018Barrier bag a plastic bag without handles used to carry unpackaged perishable food Environment Management (Container Deposit) Regulations Fiji 2011 https://files.elaw.org/app/index.do#storage/files/1/Shared/Documents/Legal/plastic/Laws_ByCountry/Fiji?pbeverage container means a jar, carton, can, bottle made of glass, polyethylene terephalate (PET) or aluminum that is or was sealed by its manufacturer External Policy: Environmental Levy on Plastic Bags Manufactured South Africa in South Africa https://www.sars.gov.za/AllDocs/OpsDocs/Policies/SE-PB-02%20-%20Environmental%20Levy%20on%20Plastic%20Bags%20Manufactured%20in%20South%20Africa%20-%20External%20Policy.pdfBin Liners A plastic bag used for lining a rubbish bin. Bahamas, The Environmental Protection (Control of Plastic Pollution)biodegradable Act, 2019 single-use plastic bag that is capable of being decomposed by bacteria or other living organisms Ville de Montreal By-Law 16- Canada, Montreal 051 http://ville.montreal.qc.ca/sel/sypre-consultation/afficherpdf?idDoc=27530&typeDoc=1biodegradable -
FL.Datasheet Kevlar® Distribution Program.Indd
MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® DISTRIBUTION PROGRAM FIBERS PROCESSES PRODUCTS WHY FIBER-LINE® DUPONTFIBER TM OPTICAL DISTRIBUTION CABLES PROGRAM? Key Features FIBER-LINE® values its relationships with both its customers and • Purchase small quantities of Kevlar® suppliers. Over the past several years, FIBER-LINE® and DuPontTM have Para-Aramid formed a strong partnership based upon the synergies between both • Many deniers & types available organizations. • Customize your Kevlar® solution with FIBER-LINE® performance adding processes FIBER-LINE®’s ability to add value to the already attractive properties of both Kevlar® Para-Aramid & Nomex® Meta-Aramid creates more opportunity in the market place to provide solution driven products to a diverse range of markets. Because FIBER-LINE® already processes so many different types and deniers of both Kevlar® & Nomex®, FIBER-LINE® have been authorized by DuPontTM to distribute small quantities of these fibers to an ever- growing customer base. Through this program, we hope to introduce businesses of all sizes to the benefit of aramid fibers. Contact us today for small order quantity orders. Available Deniers 200, 380, 400, 750AP, 800AP, 1000, 1000AP, 1420, 1500, 1500AP, 1500BK(Black), 2160, 2250, 2840, 3000, 7100. MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® PARA-ARAMID (HM) BARE FIBER PERFORMANCE Chemical Chemical Chemical Abrasion Yarn on Yarn Ultraviolet (UV) Flame Resistance Resistance Resistance Resistance Abrasion Resistance Resistance (Acid) (Alkali) (Organic Solvent) P O X P P P P CHEMICAL COMPATIBILITY Chemical Resistance to Acid: Degrades in Formic, Hydrochloric, and Sodium Hydroxide acid. Chemical Resistance to Alkali: Strong alkalis will attack at high temperature or concentration. Chemical Resistance to Organic Solvent: Degrades moderately in Carbon Tetrachloride and Ethylene Glycol/Water. -
Trade Names and Manufacturers
Appendix I Trade names and manufacturers In this appendix, some trade names of various polymeric materials are listed. The list is intended to cover the better known names but it is by no means exhaustive. It should be noted that the names given may or may not be registered. Trade name Polymer Manufacturer Abson ABS polymers B.F. Goodrich Chemical Co. Acrilan Polyacrylonitrile Chemstrand Corp. Acrylite Poly(methyl methacrylate) American Cyanamid Co. Adiprene Polyurethanes E.I. du Pont de Nemours & Co. Afcoryl ABS polymers Pechiney-Saint-Gobain Alathon Polyethylene E.I. du Pont de Nemours & Co. Alkathene Polyethylene Imperial Chemical Industries Ltd. Alloprene Chlorinated natural rubber Imperial Chemical Industries Ltd. Ameripol cis-1 ,4-Polyisoprene B.F. Goodrich Chemical Co. Araldite Epoxy resins Ciba (A.R.L.) Ltd. Arnel Cellulose triacetate Celanese Corp. Arnite Poly(ethylene terephthalate) Algemene Kunstzijde Unie N.Y. Baypren Polychloroprene Farbenfabriken Bayer AG Beetle Urea-formaldehyde resins British Industrial Plastics Ltd. Ben vic Poly(vinyl chloride) Solvay & Cie S.A. Bexphane Polypropylene Bakelite Xylonite Ltd. Butacite Poly( vinyl butyral) E.I. du Pont de Nemours & Co. Butakon Butadiene copolymers Imperial Chemical Industries Ltd. Butaprene Styrene-butadiene copolymers Firestone Tire and Rubber Co. Butvar Poly(vinyl butyral) Shawinigan Resins Corp. Cap ran Nylon 6 Allied Chemical Corp. Carbowax Poly(ethylene oxide) Union Carbide Corp. Cariflex I cis-1 ,4-Polyisoprene Shell Chemical Co. Ltd. Carina Poly(vinyl chloride) Shell Chemical Co. Ltd. TRADE NAMES AND MANUFACTURERS 457 Trade name Polymer Manufacturer Carin ex Polystyrene Shell Chemical Co. Ltd. Celcon Formaldehyde copolymer Celanese Plastics Co. Cellosize Hydroxyethylcellulose Union Carbide Corp. -
United States Patent (19) 11 Patent Number: 4,481,333 Fleischer Et Al
United States Patent (19) 11 Patent Number: 4,481,333 Fleischer et al. 45 Date of Patent: Nov. 6, 1984 54 THERMOPLASTIC COMPOSITIONS 58 Field of Search ................................ 525/192, 199 COMPRISING WINYL CHLORIDE POLYMER, CLPE AND FLUOROPOLYMER 56) References Cited U.S. PATENT DOCUMENTS 75) Inventors: Dietrich Fleischer, Darmstadt; Eckhard Weber, Liederbach; 3,005,795 10/1961 Busse et al. ......................... 525/199 3,294,871 2/1966 Schmitt et al. ...... 52.5/154 X Johannes Brandrup, Wiesbaden, all 3,299,182 1/1967 Jennings et al. ... ... 525/192 of Fed. Rep. of Germany 3,334,157 8/1967 Larsen ..................... ... 525/99 73 Assignee: Hoechst Aktiengesellschaft, Fed. 3,940,456 2/1976 Fey et al. ............................ 525/192 Rep. of Germany Primary Examiner-Carman J. Seccuro (21) Appl. No.: 566,207 Attorney, Agent, or Firm-Connolly & Hutz 22 Filed: Dec. 28, 1983 57 ABSTRACT 30 Foreign Application Priority Data The invention relates to a thermoplastic composition which comprises vinyl chloride polymers and chlori Dec. 31, 1982 (DE Fed. Rep. of Germany ....... 3248.731 nated polyethylene and which contains finely divided 51) Int. Cl. ...................... C08L 23/28; C08L 27/06; fluoropolymers and has a markedly improved process C08L 27/18 ability, particularly when shaped by extrusion. 52 U.S. C. .................................... 525/192; 525/199; 525/239 7 Claims, No Drawings 4,481,333 2 iaries and do not provide a solution to the present prob THERMOPLASTC COMPOSITIONS lem. COMPRISINGVINYL CHLORIDE POLYMER, -
Exploring the Influence of Entropy on Dynamic Macromolecular Ligation
Exploring the Influence of Entropy on Dynamic Macromolecular Ligation Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Chem. Kai Pahnke aus Nagold, Deutschland KIT-Dekan: Prof. Dr. Willem M. Klopper Referent: Prof. Dr. Christopher Barner-Kowollik Korreferent: Prof. Dr. Manfred Wilhelm Tag der mündlichen Prüfung: 22.07.2016 Die vorliegende Arbeite wurde im Zeitraum von Februar 2013 bis Juni 2016 im Rahmen einer Kollaboration zwischen dem KIT und der Evonik Industries AG unter der Betreuung von Prof. Dr. Christopher Barner-Kowollik durchgeführt Only entropy comes easy. Anton Chekhov ABSTRACT The present thesis reports a novel, expedient linker species as well as previously unforeseen effects of physical molecular parameters on reaction entropy and thus equilibria with extensive implications on diverse fields of research via the study of dynamic ligation chemistries, especially in the realm of macromolecular chemistry. A set of experiments investigating the influence of different physical molecular parameters on reaction or association equilibria is designed. Initially, previous findings of a mass dependant effect on the reaction entropy – resulting in a more pronounced debonding of heavier or longer species – are reproduced and expanded to other dynamic ligation techniques as well as further characterization methods, now including a rapid and catalyst- free Diels–Alder reaction. The effects are evidenced via high temperature nuclear magnetic resonance spectroscopy (HT NMR) as well as temperature dependent size exclusion chromatography (TD SEC) and verified via quantum chemical ab initio calculations. Next, the impact of chain mobility on entropic reaction parameters and thus the overall bonding behavior is explored via the thermoreversible ligation of chains of similar mass and length, comprising isomeric butyl side-chain substituents with differing steric demands. -
Study of Linear Low Density Polyethylene/Polytetrafluoroethylene-G-1,3-Butadiene Processability
Study of linear low density polyethylene/polytetrafluoroethylene-g-1,3-butadiene processability H. F. R. Ferreto; L. F. C. P. Lima; D. F. Parra; A. B. Lugão Instituto de Pesquisas Energéticas e Nucleares - IPEN Av. Lineu Prestes, 2242, 05508-900 Butantã, São Paulo, SP. E-mail: [email protected] Abstract The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as ‘melt fracture’ or ‘sharkskin’, which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). The olefinic monomer used was 1,3-butadiene. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). Therefore, in an effort to enhance the processability and so the drawability, it has been found helpful to add a small amount of copolymer. 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with, a torque Haake rheometer, a rotational Physica rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect ‘melt fracture’. Keywords: gamma radiation, PTFE, LLDPE, grafting 1 Introduction The radiation-induced grafting for modification of properties from commercial polymer is a largely studied technique. -
Acrylic/PMMA Poly(Methyl Methacrylate) >
Product Information Sheet Acrylic/PMMA Poly(methyl methacrylate) Acrylic (PMMA) is a water clear transparent polymer suitable for indoor and outdoor applications. PMMA is an economical alternative to polycarbonate (PC) when extreme strength is not required. It also offers great UV stability, scratch resistance, and light transparency over PC. Conventus Polymers is an authorized distributor of LG MMA. Key Features 4Water clear and transparent 4Unsurpassed in ultraviolet resistance 4Excellent scratch resistance 4Highest light transmission 4Ease of molding 4Good chemical resistance 4Easy to color (transparent, translucent, and opaque) 4Excellent economical value Comparison of PMMA vs. Other Transparent Resins Scratch resistance Chemical Transmittance Heat Impact Weatherability Workability 92% resistance resistance 4H resistance 5 Superiority PMMA 4 PC 3 Transparent ABS SAN 2 PS 1 Note: PMMA is the only polymer family that offers the unique combination of UV resistance, light transmission, and scratch resistance. Applications 4 Lighting and lenses 4 Point of purchase displays 4 Optical applications 4 Automotive components 4 PPE equipment and sheet 4 Packaging and cosmetics 4 Appliance components 4 PMMA Product Information Sheet About Conventus Polymers Conventus Polymers offers distribution as well as superior custom compounding and masterbatch solutions in thermoplastic resins. Conventus partners with you to identify the best resins, reinforcements, additives, modifiers, and more to formulate a custom compound for your specific application requirements. Conventus delivers a combination of technology, performance, and quality with speed, flexibility, and service that is unparalleled in today’s industry. The goal is to work as your partner to make your vision a reality. Conventus Manufacturing Expertise The manufacturing facilities at Conventus excel with continuous improvement and highly developed process controls to ensure every batch produced meets our customer's wide array of specifications. -
Information on Plastics
Plastics By K. P. Shah Email: kpshah123[at]gmail.com (Please replace [at] with @) Committed to improve the Quality of Life The information contained in this article represents a significant collection of technical information on plastics. This information will help to achieve increased reliability at a decreased cost. Assemblage of this information will provide a single point of reference that might otherwise be time consuming to obtain. Most of information given in this article is mainly derived from the literature on the subject indicated in the reference given at the end of this article. For more information, please refer it. All information contained in this article has been assembled with great care. However, the information is given for guidance purposes only. The ultimate responsibility for its use and any subsequent liability rests with the end user. Please see the disclaimer uploaded on http://www.practicalmaintenance.net. (Edition: April 2013) 1 Plastics www.practicalmaintenance.net Plastics Plastics are used in many products and components like compression packings, gaskets, seals, bearings, liners, etc. Instead of giving detail information about them in articles about these products, useful information about them is given in this article. Information about plastics and commonly used plastics like HDPE, UHMWPE, PTFE and nylon is given in this article. What is Plastic? Plastic is the general common term for a wide range of synthetic or semi-synthetic materials used in a huge, and growing, range of applications. All plastics were soft and moldable during their production - that's why they're called plastics. The Greek word plasticós means "to mold." Plastics are organic, the same as wood, paper or wool. -
Microwave Dielectric Properties of Glass-Reinforced Polymers
http://www.e-polymers.org e-Polymers 2005, no. 004. ISSN 1618-7229 Short communication: Microwave dielectric properties of glass-reinforced polymers Luís Cadillon Costa 1 *, Susana Devesa 1, Paulo André 1,2 1 Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 2 Telecommunications Institute, 3810-193 Aveiro, Portugal; [email protected] (Received: October 15, 2004; published: January 21, 2005) This work has been presented at the 12th Annual POLYCHAR World Forum on Advanced Materials, January 6-9, 2004, in Guimaraes, Portugal Abstract: The well-balanced combination of properties of some polymers makes them good materials for industrial microwave applications, such as telecommu- nications or microwave ovens. Particular electrical properties are usually needed and can be controlled by additives. In this work, we present the results of complex dielectric permittivity measurements, ε* = ε’ - iε’’, in the microwave frequency region (2.7 and 12.8 GHz), at constant temperature 300 K, on different glass-reinforced and pigmented plastics (poly(butylene terephthalate), polypropylene and acrylo- nitrile-butadiene-styrene), using the resonant cavity method. We measured the shift in the resonant frequency of the cavity, ∆f, caused by the insertion of the sample, which can be related to the real part of complex permittivity, ε’, while the change in the inverse of the quality factor of the cavity, ∆(1/Q), gives the imaginary part, ε’’. 1. Introduction A very versatile family of thermoplastics includes acrylonitrile-butadiene-styrene (ABS), polypropylene (PP) and poly(butylene terephthalate) (PBT). They present interesting properties, as low thermal expansion coefficient, high dielectric strength, and very low dielectric losses, and have good resistance to chemical attack [1-3]. -
Country State Business
Spotted Lanternfly Permit Participants These Participants have been trained on and found to be compliant with standards listed in the Order of Quarantine and Treatment regarding Spotted Lanternfly for operating in the quarantine area. The companies listed here have agreed to participate in and comply with the terms and conditions of the Order of Quarantine and Treatment which is designed to stop the movement of Spotted Lanternfly within or out of the current quarantine zone. Country State Business Canada AB 1763579 ON INC Canada AB 624889 BC LTD Canada AB 9958169 CANADA INC/LOHGARH TRANSPORT Canada AB ADMIRAL MERCHANTS MOTOR FREIGHT Canada AB BCD AB TRANSPORT LTD Canada AB CANEDA TRANSPORT LTD Canada AB CARAVAN AB INC Canada AB CBS TRUCKING INC Canada AB CERTARUS LTD Canada AB CODE LOGISTICS LTD Canada AB DAY AND ROSS INC Canada AB GILBERT TRUCKING LTD Canada AB JJ TRANSPORT INC Canada AB LANDSTAR Canada AB LOADSAFE CROSSBORDER FREIGHT INC Canada AB LOADSAFE/SL TRANSPORT LTD Canada AB MULLEN TRUCKING CORP Canada AB NORD-DECK TRANSPORT INC Canada AB SNOWY OWL TRANSPORTATION Canada BC 1063282 BC LTD Canada BC BERRY AND SMITH TRUCKING LTD Canada BC I-5 LOGISTICS SERVICES LTD Canada BC INTERNATIONAL MACHINE TRANSPORT INC Canada BC KDMS HOLDINGS INC Canada BC LODEXO LOGISTICS INC Canada BC MAVEN TRANSPORT LTD Canada BC PISTON TRANSPORT LTD Canada BC POWERLANE LOGISTICS INC Canada BC SKY BLUE TRANSPORT Canada BC SRT LOGISTICS Canada BC SYER TRANSPORTATION SERVICES LTD Canada BC TEN FOUR TRUCKING Canada BC THE DAY & ROSS TRANSPORTATION GROUP -
Type Material Name Abbreviation Plastic Acrylonitrile Butadiene
Type Material Name Abbreviation Plastic Acrylonitrile butadiene styrene ABS Plastic Acrylonitrile butadiene styrene - High-Temp ABS - high temp Plastic Acrylonitrile butadiene styrene + Polycarbonate ABS + PC Plastic Acrylonitrile butadiene styrene + Polycarbonate + Glass Fill ABS + PC + GF Plastic Acrylonitrile styrene acrylate ASA Plastic Nylon 6-6 + 10% Glass Fill PA66 + 10% GF Plastic Nylon 6-6 + 20% Glass Fill PA66 + 20% GF Plastic Nylon 6-6 + 30% Glass Fill PA66 + 30% GF Plastic Nylon 6-6 + 50% Glass Fill PA66 + 50% GF Plastic Nylon 6-6 Polyamide PA66 Plastic Polyamide 12 PA12 Plastic Polybutylene terephthalate PBT Plastic Polybutylene terephthalate + 30% Glass Fill PBT+ 30% GF Plastic Polycaprolactam PA6 Plastic Polycaprolactam + 20% Glass Fill PA6 + 20% GF Plastic Polycaprolactam + 30% Glass Fill PA6 + 30% GF Plastic Polycaprolactam + 50% Glass Fill PA6 + 50% GF Plastic Polycarbonate PC Plastic Polycarbonate + Glass Fill PC + GF Plastic Polycarbonate + 10% Glass Fill PC + 10% GF Plastic Polycarbonate + Acrylonitrile butadiene styrene + 20% Glass Fill + 10% Stainless Steel fiber PC + ABS + 20% GF + 10% SS Fiber Plastic Polyether ether ketone PEEK Plastic Polyetherimide + 30% Glass Fill Ultem 1000 + 30% GF Plastic Polyetherimide + 40% Glass Fill (Ultem 2410) PEI + 40% GF (Ultem 2410) Plastic Polyetherimide + Ultem 1000 PEI + Ultem 1000 Plastic Polyethylene PE Plastic Polyethylene - High-Density HDPE, PEHD Plastic Polyethylene - Low-Density LDPE Plastic Polyethylene terephthalate PET Plastic Polymethyl methacrylate PMMA Plastic Polyoxymethylene